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Abstract 

Purpose Estimating the surgery length has the potential to be utilized as skill assessment, surgical training, or 
efficient surgical facility utilization especially if it is done in real-time as a remaining surgery duration (RSD). Surgical 
length reflects a certain level of efficiency and mastery of the surgeon in a well-standardized surgery such as cataract 
surgery. In this paper, we design and develop a real-time RSD estimation method for cataract surgery that does not 
require manual labeling and is transferable with minimum fine-tuning.

Methods A regression method consisting of convolutional neural networks (CNNs) and long short-term memory 
(LSTM) is designed for RSD estimation. The model is firstly trained and evaluated for the single main surgeon with a 
large number of surgeries. Then, the fine-tuning strategy is used to transfer the model to the data of the other two 
surgeons. Mean Absolute Error (MAE in seconds) was used to evaluate the performance of the RSD estimation. The 
proposed method is compared with the naïve method which is based on the statistic of the historical data. A transfer-
ability experiment is also set to demonstrate the generalizability of the method.

Result The mean surgical time for the sample videos was 318.7 s (s) (standard deviation 83.4 s) for the main surgeon 
for the initial training. In our experiments, the lowest MAE of 19.4 s (equal to about 6.4% of the mean surgical time) 
is achieved by our best-trained model for the independent test data of the main target surgeon. It reduces the MAE 
by 35.5 s (-10.2%) compared to the naïve method. The fine-tuning strategy transfers the model trained for the main 
target to the data of other surgeons with only a small number of training data (20% of the pre-training). The MAEs for 
the other two surgeons are 28.3 s and 30.6 s with the fine-tuning model, which decreased by -8.1 s and -7.5 s than 
the Per-surgeon model (average declining of -7.8 s and 1.3% of video duration). External validation study with Cata-
ract-101 outperformed 3 reported methods of TimeLSTM, RSDNet, and CataNet.

Conclusion An approach to build a pre-trained model for estimating RSD estimation based on a single surgeon and 
then transfer to other surgeons demonstrated both low prediction error and good transferability with minimum fine-
tuning videos.
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Introduction
Cataract surgery has become one of the most standard-
ized procedures and visual acuity improves significantly 
with the surgery [1–4]. Establishing a standardized and 
quantifiable skill assessment for the training of surgeons 
is essential. There have been reports that the surgery 
length is associated with surgeons’ experience along with 
the case complexity and intraoperative complications 
[5–9], and this is also applicable to cataract surgery [10]. 
Shorter surgical length is associated with less risk of post-
operative endophthalmitis [11]. Estimating the remaining 
surgery duration (RSD) has the potential to be utilized as 
information for education, training, or optimization of 
operating room scheduling, especially if it is done in real-
time [12–19].

With the rapid development of convolutional neural 
networks (CNNs) [20–22], deep learning (DL) methods 
have achieved successful results in medical image analysis 
[23–33] including ophthalmic image classifications. The 
long short-term memory (LSTM) [34] has been proven 
to be useful in solving tasks such as estimating RSD [12, 
13] for surgery. Cataract-101 [35] and related works [36] 
also successfully applied this technology for cataract sur-
gery. However, there are two limitations still exist: (1) 
Annotation burden: Dataset like Cataract-101 needs a 
lot of annotation efforts. It requires the fine labeling of 
phases for each video, which is time costing. In fact, there 
are many unlabeled surgical video data that are proten-
tional available to model training. For practical applica-
tions, it is important to efficiently utilize them with little 
annotation burden. (2) Transferability: Different hospitals 
may utilize different kinds of surgery equipment, and the 
camera type is also not the same. The model well trained 
in an environment setting may experience severe per-
formance degradation in a new environment. Thus, the 
model transferability needs to be explored.

In this study, a CNN-based DL method that utilizes an 
LSTM structure is applied to realize the real-time RSD 
estimation for ophthalmic cataract surgery. We first com-
pared our method to previous RSD methods in an open-
source cataract surgery dataset Cataract-101. To explore 
the two limitations listed above, we aim to provide a 
method that only requires a few annotations for the 
data pre-processing step and can realize the RSD model 
training in an end-to-end manner. A fine-tuning strategy 
is also adopted to ensure that the trained model can be 
transferred among surgeons from different hospitals.

Methods
Data sets
This study was approved by the institutional research 
board at the Osaka University Hospital. Our data con-
tains 2,620 consecutive cataract surgery videos collected 

from 3 surgeons in 3 different hospitals. Cataract surger-
ies without unexpected complications were excluded, 
and typical surgical procedures were: (1) sclerocorneal 
incision/corneal incision, (2) replacing anterior cham-
ber with viscoelastic agent, (3) Continuous Curvilinear 
Capsulorhexis (CCC), (4) hydrodissection, (5) phaco-
emulsification and aspiration, (6) lens cortex aspira-
tion, (7) expanding capsule with viscoelastic agent, (8) 
intra-ocular lens insertion, (9) aspiration of the viscoe-
lastic agent, (10) sclero-corneal/corneal would sealing. 
curvature continuous cystorvideos were recorded using 
CCD camera attached to the surgical microscope. Videos 
were captured as the high definition (HD) equivalent to 
1280 × 720 pixels, and file formats were originally either.
mov,.mp4, or.mts2/.mts. Each surgeon performed cata-
ract surgeries independently in different hospitals. No 
videos were derived from the same surgery, and each 
video of the cataract surgery is independent. The back-
ground characteristics of the surgeon and surgical videos 
are shown in Table 1. All surgeons are well experienced 
in performing cataract surgeries and operate regularly, 
with their experience ranging between 5 to 25  years. 
Consecutive surgical videos conducting standard cata-
ract surgeries were collected without specific selection. 
In Fig. 1, we show the distribution of surgery duration for 
each surgeon. All the videos are decoded as 1 frame per 
second (FPS). Thus, one frame represents the time of one 
second. We choose the surgeon 1 set as the main target 
as the surgeon has the most stable surgical time, shortest 
average time, and the largest number of surgical videos. 
Surgeon 1 set is used for the model pre-training. Other 
surgeon’s sets are applied for transferability evaluation.

Method development
Before the estimation of RSD, we set a data pre-process-
ing for all the videos in our data set to extract the exact 
surgical length. Previous works [12, 13, 17] directly 
apply the RSD estimation to the entire video. Typically, a 
recorded video contains a preparation phase and a post-
operative phase including a procedure. We first used the 
temporal convolutional network [14] (TCN, structure 
shown in Supplement) to remove the preparation and 
post-operation phases that are not relevant to the true 
surgical length, and secure that the video starts with 
“sclero-corneal/corneal incision” and ends with “sclero-
corneal/corneal wound sealing” procedures. For TCN, 
it is a three categories classification task to recognize 
the start frame, the end frame, and others. TCN will go 
through the whole video sequence and give each video 
frame a prediction. There is only one start and one end 
for a video.
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To realize our main purpose of the real-time RSD 
estimation, we designed an end-to-end trainable regres-
sion model consisting of a CNNs feature extractor and 
a time series module LSTM (two-layers unidirectional). 
We show the overview of the model in Fig.  2-a. For 
one input video, the CNNs will first extract the fea-
tures for each frame and obtain the feature vector ft . 
The LSTM will then process the extracted features in 
a temporal order. For the loss calculation, each frame 
will have its own prediction with a proportional pro-
cess value s ( s = t/T , where T is the maximum length 
of a video, where t is the elapsed time of the current 
frame). This value tells where the current frame is, as 
the percentage of the whole surgery. Since the elapsed 
time for the current processing frame is known, there-
fore, the length of the remaining time yrsdt  can be calcu-
lated. Another benefit of this method is that there is no 
need for manual annotation, as the ground truth can be 
automatically obtained by dividing the elapsed time of 
the current frame by the entire surgery duration. Since 

this is a linear regression task, we use the L1 loss as the 
loss function.

Experiments setting and evaluation
We first compared our RSD method with previous works 
using an open-source dataset Cataract-101 [35]. This 
dataset contains 101 cataract surgery videos by four dif-
ferent surgeons with a resolution of 720 × 540 pixels 
acquired at 25 fps. Each video is annotated with 10 sur-
gical phases and surgeon experience (senior or assistant 
surgeon). Our comparison refers to three existing RSD 
models as follows:

(1) TimeLSTM [13]: A CNNs backbone is trained for 
phase classification and an LSTM is adopted for RSD 
prediction.
(2) RSDNet [12]: It is a modified version of [13], pre-
dicting the progress and RSD.
(3) CataNet [36]: This model is designed for the 
Cataract-101 dataset which uses both the image and 
elapsed time as CNNs’ input.

Table 1 Statistic of our data set

The videos are decoded as 1FPS and pre-processed by the TCN model. The performance of the naïve method is calculated with mean and median (MAE in seconds 
and its percentage % of video duration)

MAE mean absolute error

Role of the dataset Main model Pre-training Transferability Evaluation

Hospital A B C

Surgeon 001 Surgeon 002 Surgeon 003
Video Number 2310 256 54

Mean ± standard deviation (s) 318.7 ± 83.4 547.9 ± 146.3 515.5 ± 140.3

Median (s) 300.0 513.0 480.0

Naïve MAE Mean (s) 54.9 ± 62.9 106.2 ± 100.6 104.6 ± 93.5

Mean (%) 16.6 ± 14.5 19.1 ± 14.3 20.2 ± 16.1

Median (s) 52.4 ± 67.7 102.3 ± 110.3 97.3 ± 107.2

Median (%) 14.8 ± 13.8 17.1 ± 13.3 17.4 ± 15.5

Fig. 1 Duration histogram for each surgeon. The duration statistic of all three surgeons. All the videos are pre-processed with the TCN model. We 
set the interval of 100 s for demonstration and all the videos are decoded as 1 frame per second (FPS)
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We mainly have two improvements for our RSD 
model: (1) All previous works train the backbone CNNs 
with a classification task and then fix its parameter dur-
ing the continuous training of LSTM. We found that 
the frozen backbone restricts the feature extraction 
ability. Thus, in our setting, the whole model is traina-
ble. (2) Instead of directly predicting the RSD as [], our 
model predicts the proportional process value s , which 
enables the RSD prediction in a better form. Following 
the experiment setting of CataNet, we randomly split 
data into 81 for training and 20 for testing. fivefold 
cross-validation is adopted for model training. Video is 
down-sampled to 2.5FPS and the input size of each 
frame is 224 × 224. For a fair comparison, all the 
method adopts ResNet-50 [37] as the CNNs backbone 
and uses AdamW as an optimizer with a learning rate 
of 0.0001. The label of phase and surgeon experience 
are excluded during the training. The performance is 
evaluated by Mean Absolute Error 
(MAE = 1T

∑T−1
t=0

∣∣∣̂yrsdt − yrsdt

∣∣∣ ), MAE-2 (MAE averaged 

over the last 2  min), and MAE-5 (MAE averaged over 
the last 5 min).

We applied a pre-training and fine-tuning strategy 
to the custom dataset for the evaluation of transferabil-
ity. As shown in Table  4, we set surgeon 1 as the main 
training target and use fine-tuning to transfer the trained 
model (based on surgeon 1) to other surgeons’ samples. 
For surgeon 1, the training set, validation set, and test set 
are randomly split with a ratio of 80%, 10%, and 10%. For 
other surgeons, the ratio is 50%, 25%, and 25%. The model 
with the best performance in the validation set is saved 
during training. We adopt ResNet-18 [37] as the back-
bone CNNs and each input frame is resized to 224 × 224. 
We adopt a two-layers unidirectional LSTM with a hid-
den dimension of 512. The cell number of LSTM is 
decided by the video sequence length. The AdamW is 
adopted as an optimizer and the learning rate is set as 
0.0001. We evaluated the RSD estimation by MAE. As 
a reference, in comparison to our method, we simply 
applied a Naïve approach [12]. This approach is defined 

Fig. 2 Structure of Proposed Method. a The proposed regression model which consists of CNNs and LSTM. CNNs are used to extract the features 
for each frame. LSTM will analyze the feature in time order and output the process (%) prediction for each elapsed time. b The figure on the left is 
the real-time prediction of a sample from surgeon 1’s test set. The horizontal axis is the true elapsed time (s), and the column axis is the progress (%) 
prediction of where the current time is during the whole video. The green line is the true label and the red line is the prediction. The figure on the 
right is the overlap map for observing the prediction error for the whole test set. The horizontal axis is the true elapsed time (s), and the column axis 
is the prediction error (s). The overlap map is drawn by overlapping the prediction error curve of all the test set samples of surgeon 1
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as ŷrsdt = max(0, tref − tel) , where tref  is the referential 
duration derived from the dataset (statistic of the length 
of the videos, mean or median). tel is the time that has 
already passed at current time t . We can simply calculate 
the MAE for all videos under the definition. This method 
requires no training but only relies on the statistic of the 
historical data of surgery length. The Naïve MAE for each 
surgeon is shown in Table 1.

All our experiments are implemented with a Tesla 
V100 32G GPU (Nvidia, CA, USA).

Results
Experiments on data pre-processing
Ophthalmology specialist (RK) provided the annota-
tion for surgical procedures by the order of second for 
100 videos for training the TCN for this preprocess. The 
result shows that the trained model shows very high per-
formance (mean error < 2  s) in the independent test set. 
We further annotated a few videos (20 videos for each 
surgeon) for the videos of the rest three surgeons to test 
the transferability. The model still shows high perfor-
mance (mean error < 5 s) for other surgeons’ videos that 
have never been accessed during training. As shown 
in Table  2, the ACC and AUC represent the prediction 
accuracy of labeled start and end frames. It is a three-
classes classification problem (start frame, end frame, 
and others). ACC is the classification performance for all 
three categories. AUC@start and AUC@end are used to 
evaluate the recognition of start and end frames respec-
tively. We can observe that the TCN model achieved high 
performance. Even for the worst result from surgeon 3, 
the time difference is smaller than 5 s.

Experiments on cataract-101 dataset
In Table  3, we compared our RSD model with previ-
ous methods on the Cataract-101 dataset. The results 
are evaluated by MAE for seniors’ videos, assistants’ 
videos, and all the videos. We can observe that our 
method outperforms previous works in almost all the 
settings. For the most important setting of MAE for all 
the videos, our method decreases the MAE of 24.8  s, 
12.8  s, and 4.9  s than TimeLSTM, RSDNet, and Cata-
Net respectively. Depending on the surgeon’s experi-
ence, Cataract-101 has two types of surgical videos and 

there is an obvious prediction accuracy gap between 
senior and assistant. Our method reduces this gap to 
4.1  s, where this gap was 49.2  s, 32.5  s, and 12.8  s for 
TimeLSTM, RSDNet, and CataNet, respectively.

We also implement an ablation study to evaluate the 
impact of our two improvements on the RSD model. As 
shown in Table  4, there are 3 comparisons: (i) “Base” 
represents the results of proposed RSD model, (ii) “Fix” 
represents the model trained with backbone fixed, and 
(iii) “RSD” represents the model is trained to directly 
predict RSD. After fixing the backbone during training, 
the mean of MAE for almost all settings is only slightly 
increased (about 1  s). However, the variance shows an 
obvious rising (about 7  s). It implies that training the 
entire model can contribute to a more robust RSD pre-
diction. We can also observe an obvious improvement 
when using proportional process value s for predicting 
RSD. It can reduce the MAE by 5.6  s. In general, the 
experimental results on Cataract-101 demonstrate the 
superiority of our RSD method.

Table 2 Prediction accuracy of TCN in ours dataset

Acc AUC@start AUC@end

Surgeon 1 0.991 1.000 0.997

Surgeon 2 0.970 0.997 0.962

Surgeon 3 0.962 0.995 0.957

Table 3 Comparison to previous methods on Cataract-101

The MAE (mean ± std, in seconds) is shown for entire videos, MAE-2 for last two 
minutes and MAE-5 for last five minutes

Experience TimeLSTM RSDNet CataNet Ours

All 103.2 ± 52.2 99.2 ± 47.3 92.2 ± 40.8 88.3 ± 35.5

MAE-
5

Senior 133.7 ± 56.8 124.2 ± 51.7 98.7 ± 44.5 91.6 ± 41.2

Assistant 72.6 ± 18.5 76.1 ± 20.4 85.6 ± 29.1 84.9 ± 22.8

All 92.9 ± 27.6 86.0 ± 27.2 78.6 ± 22.6 76.9 ± 22.1

MAE-
2

Senior 100.2 ± 24.7 95.8 ± 28.4 80.7 ± 19.2 82.2 ± 24.8

Assistant 85.5 ± 22.7 76.1 ± 25.0 75.8 ± 21.0 71.5 ± 18.4

All 115.6 ± 43.2 103.6 ± 45.9 95.7 ± 40.5 90.8 ± 37.9

MAE Senior 140.2 ± 45.1 119.8 ± 48.6 102.1 ± 38.8 92.8 ± 32.1

Assistant 91.0 ± 39.3 87.3 ± 40.1 89.3 ± 42.3 88.7 ± 39.3

Table 4 Ablation for RSD prediction on cataract-101

Experience (i) Base (ii) Fix (iii) RSD

All 88.3 ± 35.5 90.4 ± 40.1 94.9 ± 34.2

MAE-5 Senior 91.6 ± 41.2 95.5 ± 46.0 98.2 ± 40.9

Assistant 84.9 ± 22.8 85.3 ± 23.4 91.5 ± 21.1

All 76.9 ± 22.1 78.9 ± 25.3 83.7 ± 24.3

MAE-2 Senior 82.2 ± 24.8 84.7 ± 29.4 86.8 ± 24.6

Assistant 71.5 ± 18.4 73.0 ± 21.6 80.6 ± 19.0

All 90.8 ± 37.9 91.2 ± 42.8 96.4 ± 39.5

MAE Senior 92.8 ± 32.1 97.9 ± 36.2 99.6 ± 30.4

Assistant 88.7 ± 39.3 84.5 ± 45.8 93.1 ± 41.7
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Experiments on the custom dataset
For the continuous part, we analyzed the experiment 
results on our custom dataset. In Table  5, we show the 
experimental results of RSD estimation for the proposed 
method in the test set. 86.6% of surgeon 1’s videos have 
the surgical length mostly ranging between 200 and 300 s, 
and only 1.7% of videos are with durations over 400  s. 
As shown in Table  1, the mean and median of all the 
videos of surgeon 1 are 318.7 s and 300.0 s respectively. 
The MAEs of the two naïve settings are 54.9 ± 62.9 s and 
52.4 ± 67.7 s, which show no obvious difference between 
each other. The proposed method has much better per-
formance than the naïve method (reduces the MAE by 
35.5 s and 33.0 s (10.2% and 8.4%) compared to the mean 
and median naïve method, respectively), and the MAE 
for the proposed method is 19.4  s, with a variance of 
24.9 s. The MAE in prediction is only about 6.4% of the 
video duration. Since our model can serve as a real-time 
regression prediction, for each second, there is the pre-
diction for the corresponding process value. In Fig.  2-b 
left, we demonstrate the prediction of one sample from 
surgeon 1’s test set. We can observe that the prediction 
curve (red line) is around the true process slash (green 
line). The vertical distance between two lines is the pre-
diction error. The prediction of one sample will get a 
MAE of 0 when the prediction curve is matched up with 
the true process slash.

In Fig.  2-b right, we also show an overlap map for 
observing the prediction error for the whole test set. The 
horizontal axis is the elapsed time of the surgery and the 
column axis is the prediction error which can be both 
positive and negative. The prediction error results of 
all the videos in the test set are overlapped on this fig-
ure. There is a high-density part around the horizontal 
axis (time < 400 s), with an error range of -15 s ~ 15 s. We 
can find that the prediction error is small for the vid-
eos near the center (200 s < time < 300 s) of the duration 

distribution, while the videos far from the center range 
may have a large prediction error. This is consistent with 
the data statistic in Table 1 and Fig. 1. We also draw the 
box plots by every 50  s in the supplement. It obviously 
shows the prediction error of each elapsed time. This 
also proves that the model has better prediction results 
around the center of the distribution.

Compared to surgeon 1’s duration distribution, the 
distributions of surgeon 2 and 3 are sparser. As shown 
in Table  1, they have a larger mean duration and vari-
ance, which further worsen the performance of the naïve 
method. The MAE results of both naïve settings for 
those surgeons are almost all over 100  s. This is a large 
prediction error which reflects that the naive method 
cannot well deal with the data that is with a sparse dis-
tribution. We directly applied the model trained with the 
data of surgeon 1 to the data of other surgeons. We fur-
ther implement an experiment on surgeon 2 for verifying 
how much data are necessary for fine-tuning the model. 
The results (Table 5, shown as the Pre-trained model) are 
better than the naïve but are still not satisfactory. This is 
possibly due to the different characteristics (such as sur-
geon skills, surgery environments, etc.) of each surgeon’s 
data, especially the surgeons belonging to different hospi-
tals. The fine-tuning strategy can obviously improve the 
model performance. Figure 3 shows the number of used 
training data (every 10% of the whole training data) in the 
horizontal axis and the column axis is the MAE evalu-
ation results of the test set for surgeon 2. We first ran-
domly separated the training set into ten subsets (from 
number 1 to 10) of equal size. We then gradually add the 
subset into the model train by the number order. Thus, 
the test results are only related to the training size. We 
can find that the MAE only slightly increased (about 3 s) 
when setting the ratio of training data from 20% (25 vid-
eos) to 100% (128 videos). This supports the fine-tuning 
strategy for the surgeon 3, which has relatively small 

Table 5 Results of the RSD estimation

Per-surgeon model: a model without fine-tuning using per-surgeon’s data for training. Pre-trained model: a model only uses the pre-trained parameter from surgeon 
1 to surgeons 2 and 3. Fine-tuned model: a model using the pre-trained parameter from surgeon 1 and fine-tuned with the training data. MAE: mean absolute error
*  t-test compared to the per-surgeon model

Data Models MAE (s) MAE (%) Difference in the 
MAE (s)

p-value *

Surgeon 001 Per-surgeon model 19.4 ± 24.9 6.4 ± 4.6 - -

Surgeon 002 Per-surgeon model 36.4 ± 16.0 5.8 ± 2.9 Reference -

Pre-trained with Surgeon 1 model 94.5 ± 48.3 18.1 ± 7.6  + 58.1 s  < 0.001

Fine-tuned model (number for fine-tuning = 128 videos) 28.3 ± 19.0 5.2 ± 2.8 -8.1 s  < 0.001

Surgeon 003 Per-surgeon model 38.1 ± 18.5 9.3 ± 6.8 Reference -

Pre-trained with Surgeon 1 model 87.4 ± 39.9 17.2 ± 8.0  + 49.3 s  < 0.001

Fine-tuned model (number for fine-tuning = 27 videos) 30.6 ± 15.3 7.9 ± 4.0 -7.5 s 0.003
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number of videos. To tune the model, only a small num-
ber of data (27 as the minimum in our case) for each 
surgeon are needed. With the fine-tuning strategy, the 
MAEs for these two surgeons are 28.3 s and 30.6 s, which 
decreased by -8.1 s and -7.5 s than the Per-surgeon model 
(average declining of 7.8 s and 1.3% of video duration). In 
Fig. 4, shown from left to right, the fine-tuned model has 
much better performance than the pre-trained model. 
In addition, the results of the overlap map show similar 
trends with surgeon 1. The samples near the distribution 
center have low prediction errors, while the predictions 
for other videos are usually with higher errors. We also 
show the extension plot map of each surgeon in Fig. 5.

Discussions
In this paper, we designed an end-to-end trainable 
regression model to realize a real-time estimation of 
the remaining surgical duration for cataract surgery. In 
an open-source dataset Cataract-101, our RSD method 
outperforms the best competitor by 4.9  s. We also 
released a custom dataset with 2620 surgery videos to 
explore the limitation of previous works. The experi-
mental results prove that the proposed method has a 
low prediction error (MAE of 19.4  s) and can be eas-
ily transferred among different surgeons with minimum 
fine-tuning. Although cataract surgery is one of the 
most standardized surgeries, surgical time for each case 
is highly variable depending on the surgeons’ experi-
ence along with the case complexity [7]. The use-case of 
our proposed RSD estimation has mainly three clinical 
benefits. Firstly, shorter surgical time is associated with 
better surgical outcomes and less risk of post-operative 
endophthalmitis [8]. The proposed RSD estimation 
model can be utilized as a tool to record and monitor 
surgical time. Secondly, the estimation of surgical time 
can be considered as an average surgical time based on 
past surgeries. Thus, it acts as a benchmark surgical 
time so that one can evaluate the actual surgical time to 
identify which procedure can be improved. As shown 
in Fig.  4, there are differences against the estimation 
in whether the actual time is faster or slower than the 
estimation which is considered as an averaged proce-
dure time. Comparing the actual time to the estimated 
time by procedures can suggest which procedure has 
reached the average time, and which procedure has not. 
Having this information in real-time will help a super-
visor to understand the progress by bench marking 
their skills. Thirdly, real-time estimation has the most 

Fig. 3 The experiment for fine-tuning data quantity evaluation. The 
horizontal axis is the number of training data used for fine-tuning 
the model. We take those numbers by every 10% of the training data 
from surgeon 2. The column axis is the MAE estimation of surgeon 2’s 
test set

Fig. 4 The experiments result for surgeon 2 and 3. The results of the pre-trained model and fine-tuned model are shown on the left and right, 
respectively. From left to right, we can observe the improvement of the real-time prediction samples and the overlap maps. All the results are 
calculated by the test set of each surgeon
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Fig. 5 The demonstration of plot maps. This is the extension of the overlap map shown in Figs. 2 (b) and 4. The horizontal axis is the elapsed time 
(s), and the column axis is the prediction error (s). For each surgeon, the box plots map is drawn by every 50 s on the horizontal axis
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potential for better efficiency in utilizing resources of 
surgical staff and surgical facilities such as operating 
rooms and instruments essential to provide sustainable 
medical services. Optimizing surgical facilities can con-
tribute to enhancing patient experiences by minimiz-
ing waiting time and allocating training time for trainee 
surgeons.

There are variations in the procedure order, length, 
and instruments used. Therefore, rather than having a 
single model, we hypothesized that the highly individu-
alized model by light fine-tuning for each surgeon per-
forms better. We adopted a “pre-training and minimum 
fine-tuning” strategy, and we achieved good estimation 
without further data labeling work and efficient process 
flow. Our strategy can be reproduced by starting from a 
pre-training base model, and then using very lightweight 
fine-tuning of < 50 videos for each specified surgeon to 
realize the transfer of the model parameter. Especially 
for the videos near the duration distribution center, the 
prediction error is small. However, for the videos with 
uncommon durations (e.g., too long or short), the model 
may have large prediction errors. This can be caused by 
the data imbalance, i.e., the model will be adjusted to 
better fit into most samples during the training process 
while ignoring some uncommon cases.

We have several observations in fine-tuning strategy 
that can perform well with small samples, still there were 
better outcome with more samples were available. For 
example, surgeon 2 has video samples of n = 128 and the 
fine-tuning results are better than those of surgeon 3 who 
has less number for fine-tuning (n = 27). If we aim for the 
model to achieve high accuracy, it can be fine-tuned with 
at least 100 videos from each surgeon. We consider it is 
still a reasonable number for additional annotation work-
load, as this model only requires the starting frame and 
the ending frame for training the model.

The limitations of this study should be stated. Firstly, 
more variation in the dataset will contribute to the analy-
sis of robust RSD estimation for cataract surgery videos. 
Our dataset has 2,620 ophthalmic cataract surgery videos 
of four surgeons collected from three different hospitals 
with relatively experienced surgical skills. For transfer-
ability experiments, we only have three surgeons. We will 
add more surgeons for future studies with various expe-
riences, especially less experienced surgeons. Additional 
experimental subjects will increase the robustness of the 
proposed method. Secondly, we only used ResNet-18 as 
the feature extractor in our model construction. Gener-
ally, a larger backbone (e.g. ResNet-50) will enhance the 
fitting ability of the model. However, we train the model 
in an end-to-end manner and the real-time prediction 
task maximally requires the whole video as the input. The 
GPU memory limited the selection of the backbone.

Conclusions
In this paper, we designed an end-to-end trainable 
regression model to realize a real-time estimation of 
the remaining surgical duration for cataract surgery. In 
an open-source dataset Cataract-101, our RSD method 
outperforms the best competitor by 4.9  s. We also 
released a custom dataset with 2620 surgery videos to 
explore the limitation of previous works. The experi-
mental results prove that the proposed method has a 
low prediction error (MAE of 19.4  s) and can be eas-
ily transferred among different surgeons with minimum 
fine-tuning. We believe this method can contribute 
to expanding the potential of utilizing real-time RSD 
information for surgical training and optimization of 
surgical facilities and resources.
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