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Abstract

Interpreting and explaining the behavior of deep neural
networks is critical for many tasks. Explainable AI pro-
vides a way to address this challenge, mostly by provid-
ing per-pixel relevance to the decision. Yet, interpreting
such explanations may require expert knowledge. Some re-
cent attempts toward interpretability adopt a concept-based
framework, giving a higher-level relationship between some
concepts and model decisions. This paper proposes Bot-
tleneck Concept Learner (BotCL), which represents an im-
age solely by the presence/absence of concepts learned
through training over the target task without explicit super-
vision over the concepts. It uses self-supervision and tai-
lored regularizers so that learned concepts can be human-
understandable. Using some image classification tasks as
our testbed, we demonstrate BotCL’s potential to rebuild
neural networks for better interpretability 1.

1. Introduction
Understanding the behavior of deep neural networks

(DNNs) is a major challenge in the explainable AI (XAI)

community, especially for medical applications [19,38], for

identifying biases in DNNs [2, 18, 42], etc. Tremendous re-

search efforts have been devoted to the post-hoc paradigm

for a posteriori explanation [29, 33]. This paradigm pro-

duces a relevance map to spot regions in the input image that

interact with the model’s decision. Yet the relevance map

only tells low-level (or per-pixel) relationships and does not

explicitly convey any semantics behind the decision. Inter-

pretation of relevance maps may require expert knowledge.

The concept-based framework [22, 37, 50] is inspired by

the human capacity to learn a new concept by (subcon-

sciously) finding finer-grained concepts and reuse them in

different ways for better recognition [24]. Instead of giv-

ing per-pixel relevance, this framework offers higher-level

*Corresponding author.
1Code is avaliable at https://github.com/wbw520/BotCL and a simple

demo is available at https://botcl.liangzhili.com/.
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Figure 1. Examples of concepts discovered by BotCL in Ima-

geNet [10] and concepts in the input image. BotCL automatically

discovers a set of concepts optimized for the target task and repre-

sents an image solely with the presence/absence of concepts.

relationships between the image and decision mediated by

a limited number of concepts. That is, the decision is ex-

plained by giving a set of concepts found in the image. The

interpretation of the decision is thus straightforward once

the interpretation of each concept is established.

Some works use concepts for the post-hoc paradigm for

better interpretation of the decision [14, 50], while the link

between the decision and concepts in the image is not ob-

vious. The concept bottleneck structure [23] uses the pres-

ence/absence of concepts as image representation (referred

to as concept activation). The classifier has access only to

the concept activation, so the decision is strongly tied to the

concepts. This bottleneck structure has become the main-

stream of the concept-based framework [5, 20, 28, 31].

A major difficulty in this framework is designing a set of

concepts that suits the target task. A promising approach is

handcrafting them [4, 21, 48], which inherently offers bet-

ter interpretability at the cost of extra annotations on the

concepts. Recent attempts automatically discover concepts

[1, 13, 14, 46]. Such concepts may not always be consis-

tent with how humans (or models) see the world [25, 47]

and may require some effort to interpret them, but concept

discovery without supervision is a significant advantage.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Inspired by these works, we propose bottleneck concept
learner (BotCL) for simultaneously discovering concepts

and learning the classifier. BotCL optimizes concepts for

the given target image classification task without supervi-

sion for the concepts. An image is represented solely by

the existence of concepts and is classified using them. We

adopt a slot attention-based mechanism [26, 27] to spot the

region in which each concept is found. This gives an extra

signal for interpreting the decision since one can easily see

what each learned concept represents by collectively show-

ing training images with the detected concepts. Figure 1

shows examples from ImageNet [10]. BotCL discovers a

predefined number of concepts in the dataset, which are ex-

emplified by several images with attention maps. An image

of Great White Shark is represented by the right part of

mouth (Cpt.1) and fins (Cpt.3). BotCL uses a single

fully-connected (FC) layer as a classifier, which is simple

but enough to encode the co-occurrence of each concept and

each class.

Contribution. For better concept discovery, we propose

to use self-supervision over concepts, inspired by the re-

cent success in representation learning [9,16]. Our ablation

study demonstrates that self-supervision by contrastive loss

is the key. We also try several constraints on concepts them-

selves, i.e., individual consistency to make a concept more

selective and mutual distinctiveness for better coverage of

various visual elements. These additional constraints regu-

lar the training process and help the model learn concepts

of higher quality.

2. Related Works
2.1. Explainable AI

XAI focuses on uncovering black-box deep neural net-

works [3, 6, 12, 32, 35, 36, 41, 43, 46]. A major approach

is generating a relevance map that spots important regions

for the model’s decision. Various methods have been de-

signed for specific architectures, e.g., CAM [49], and Grad-

CAM [33] for convolutional neural networks; [7] for Trans-

formers [40]. However, the interpretation of the relevance

maps may not always be obvious, which spurs different ap-

proaches [34, 45], including context-based ones.

2.2. Concept-based framework for interpretability

A straightforward way to define a set of concepts for a

target task is to utilize human knowledge [22,48]. Such con-

cepts allow quantifying their importance for a decision [21].

A large corpus of concepts [4, 39] is beneficial for delving

into hidden semantics in DNNs [50]. These methods are of

the post-hoc XAI paradigm, but a handcrafted set of con-

cepts can also be used as additional supervision for models

with the concept bottleneck structure [15, 22, 31].

Handcrafting a set of concepts offers better interpretabil-

ity as they suit human perception; however, the annotation

cost is non-negligible. Moreover, such handcrafted con-

cepts may not always be useful for DNNs [47]. These prob-

lems have motivated automatic concept discovery. Super-

pixels are a handy unit for finding low-level semantics, and

concepts are defined by clustering them [13, 14, 30]. An-

other interesting approach is designing a set of concepts to

be sufficient statistics of original DNN features [46]. These

methods are designed purely for interpretation, and concept

discovery is made aside from training on the target task.

The concept bottleneck structure allows optimizing a

set of concepts for the target task. ProtoPNet [8] adopts

this structure and identifies concepts based on the dis-

tance between features and concepts. SENN [1] uses self-

supervision by reconstruction loss for concept discovery.

SENN inspired us to use self-supervision, but instead of

reconstruction loss, we adopt contrastive loss tailored. For

a natural image classification task, this contrastive loss is

essential for concept discovery.

3. Model
Given a dataset D = {(xi, yi)|i = 1, 2, . . . , N}, where

xi is an image and yi is the target class label in the set Ω
associated with xi. BotCL learns a set of k concepts while

learning the original classification task. Figure 2a shows an

overview of BotCL’s training scheme, consisting of a con-

cept extractor, regularizers, and a classifier, as well as self-

supervision (contrastive and reconstruction losses).

For a new image x, we extract feature map F = Φ(x) ∈
R

d×h×w using a backbone convolutional neural network Φ.

F is then fed into the concept extractor gC , where C is a ma-

trix, each of whose κ-th column vector cκ is a concept pro-
totype to be learned. The concept extractor produces con-

cept bottleneck activations t ∈ [0, 1]k, indicating the pres-

ence of each concept, as well as concept features V ∈ R
d×k

from regions where each concept exists. The concept acti-

vations in t are used as input to the classifier to compute

score s ∈ [0, 1]|Ω|. We use self-supervision and regular-

izers for training, taking t and V as input to constrain the

concept prototypes.

3.1. Concept Extractor

Concept extractor uses slot attention [26, 27]-based

mechanism to discover visual concepts in D. We first add

position embedding P to feature map F to retain the spatial

information, i.e., F ′ = F +P . The spatial dimension of F ′

is flattened, so its shape is l × d, where l = hw.

The slot-attention computes attention over the spatial di-

mension for concept κ from cκ and F ′. Let Q(cκ) ∈ R
d,

and K(F ′) ∈ R
d×l denote nonlinear transformations for cκ

and F ′, respectively, given as multi-layer perceptrons with

three FC layers and a ReLU nonlinearity between them. At-

tention aκ ∈ [0, 1]l is given using a normalization function
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Figure 2. (a) The model pipeline. (b) Self-supervision and regularizers.

φ (refer to supp. material) as

aκ = φ(Q(cκ)
�K(F ′)). (1)

This attention indicates where concept κ presents in the

image as shown in Figure 1. If concept κ is absent, corre-

sponding entries of aκ are all close to 0. We summarize the

presence of each concept into concept activation tκ by re-

ducing the spatial dimension of aκ as tκ = tanh(
∑

m aκm),
where aκm is the m-th element of aκ.

3.2. Feature Aggregation

For training, we also aggregate features in F correspond-

ing to concept κ into concept feature vκ by

vκ = Faκ, (2)

which gives the average of image features over the spatial

dimension weighted by attention.

3.3. Classifier

We use a single FC layer without a bias term as the clas-

sifier, and concept activation t = (t1, . . . , tk)
� is the only

input, serving as the concept bottleneck [22]. Formally, let-

ting W be a learnable matrix, prediction ŷ ∈ R
|Ω| is given

by

ŷ = Wt. (3)

This classifier can be roughly interpreted as learning the

correlation between the class and concepts. Let wω be the

raw vector of W corresponding to class ω ∈ Ω, and wωκ is

its κ-th element. A positive value of wωκ means that con-

cept κ co-occurs with class ω in the dataset, so its presence

in a new image positively supports class ω. Meanwhile, a

negative value means the concept rarely co-occurs.

4. Training
4.1. Self-supervision for Concept Discovery

The absence of concept labels motivates us to incorpo-

rate self-supervision for concept discovery. We employ two

losses for different types of target tasks.

Reconstruction loss. SENN [1] uses an autoencoder-like

structure for learning better representation. We assume

this structure works well when visual elements are strongly

tied with the position2 since even discrete concepts should

have sufficient information to reconstruct the original im-

age. Based on this assumption, we design a reconstruction

loss for self-supervision. As shown in Figure 2b, decoder

D only takes t as input and reconstructs the original image.

We define our reconstruction loss as

lrec =
1

|B|
∑
x∈B

‖D(t)− x‖2. (4)

Contrastive loss. The composition of natural images is

rather arbitrary, so information in t should be insufficient

to reconstruct the original image. we thus design a simple

loss for an alternative, borrowing the idea from the recent

success of contrastive learning for self-supervision [9, 16].

We leverage the image-level labels of the target classifi-

cation task. Let t̂ = 2t−1k, where 1k is the k-dimensional

vector with all elements being 1. If a pair (t̂, t̂′) of concept

activations belong to the same class (i.e., y = y′ for y and

y′ corresponding to t̂ and t̂′), they should be similar to each

other since a similar set of concepts should be in the cor-

responding images, and otherwise dissimilar. The number

|Ω| of classes can be smaller than the number |B| of images

in a mini-batch so that a mini-batch can have multiple im-

ages of the same class. Therefore, we use sigmoid instead

of softmax, leading to

lret = − 1

|B|
∑

α(y, y′) log J(t̂, t̂′, y, y′), (5)

where α is the weight to mitigate the class imbalance prob-

lem (see supp. material) and

J(t̂, t̂′, y, y′) =

{
σ(t̂�t̂′) for y = y′

1− σ(t̂�t̂′) otherwise
. (6)

2For example, images of “7” in MNIST almost always have the acute

angle in the top-right part.
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4.2. Concept Regularizers

We also employ concept regularizers to facilitate train-

ing. They constrain concept prototypes {cκ} through {vκ}.

Individual consistency. For better interpretability, each

learned concept should not have large variations. That is,

the concept features vκ and v′κ of different images should

be similar to each other if tκ is close to 1. Let Hκ denote

the set of all concept features of different images in a mini-

batch, whose activation is larger than the empirical thresh-

old ξ, which is dynamically calculated as the mean of tκ in a

mini-batch. Using the cosine similarity sim(·, ·), we define

the consistency loss as:

lcon = −1

k

∑
κ

∑
vκ,v′

κ

sim(vκ, v
′
κ)

|Hκ|(|Hκ| − 1)
, (7)

where the second summation is computed over all combi-

nations of concept features vκ and v′κ. This loss penalizes a

smaller similarity between vκ and v′κ.

Mutual distinctiveness. To capture different aspects of

images, different concepts should cover different visual el-

ements. This means that the average image features of con-

cept κ within a mini-batch, given by v̄κ =
∑

vκ∈Hκ
vκ,

should be different from any other vκ′ . We can encode this

into a loss term as

ldis =
∑
κ,κ′

sim(v̄κ, v̄κ′)

k(k − 1)
, (8)

where the summation is computed over all combinations of

concepts. Note that concept κ is excluded from this loss if

no image in a mini-batch has concept κ.

4.3. Quantization Loss

Concept activation t can be sufficiently represented by

a binary value, but we instead use a continuous value for

training. We design a quantization loss to guarantee values

are close to 0 or 1, given by

lqua =
1

k|B|
∑
x∈B

∥∥abs(t̂)− 1κ

∥∥2 , (9)

where abs(·) gives the element-wise absolute value and ‖ ·‖
gives the Euclidean norm.

4.4. Total Loss

We use softmax cross-entropy for the target classification

task’s loss, donated by lcls. The overall loss of BotCL is

defined by combining the losses above as

L = lcls + λRlR + λconlcon + λdisldis + λqualqua, (10)

where lR is either lrec or lret depending on the target domain,

λqua, λcon, λdis, and λR are weights to balance each term.

5. Results

5.1. Experimental Settings

We evaluate BotCL on MNIST [11], CUB200 [44], and

ImageNet [10]. For evaluating discovered concepts, we re-

generated a synthetic shape dataset (Synthetic) [46].

For MNIST, we applied the same networks as [1] for the

backbone and the concept decoder. For CUB200 (same data

split as [22]) and ImageNet, we used pre-trained ResNet

[17] as the backbone with a 1 × 1 convolutional layer to

reduce the channel number (512 for ResNet-18 and 2048 for

ResNet-101) to 128. We chose a concept number k = 20 for

MNIST and k = 50 for the other natural image datasets. To

generate Synthetic, we followed the setting of [46], where

18,000 images were generated for training and 2,000 for

evaluation. We used k = 15 with ResNet-18 backbone.

Images were resized to 256× 256 and cropped to 224×
224 (images in Synthetic were directly resized to 224×224).

Only random horizontal flip was applied as data augmenta-

tion during training. The weight of each loss was defaulted

to λqua = 0.1, λcon = 0.01, λdis = 0.05, and λR = 0.1.

5.2. Classification Performance

We compare the performance of BotCL with correspond-

ing baselines (LeNet for MNIST and ResNet-18 for others

with a linear classifier), our reimplementation of k-means

and PCA in [46],3 and state-of-the-art concept-based mod-

els. Table 1 summarized the results. BotCL with contrastive

loss (BotCLCont) achieves the best accuracy on CUB200,

ImageNet, and Synthetic, outperforming the baseline lin-

ear classifiers. It is also comparable to the state-of-the-art

on MNIST and Synthetic. BotCL with reconstruction loss

(BotCLRec) shows a performance drop over CUB200, Im-

ageNet, and Synthetic, while it outperforms BotCLCont on

MNIST. This behavior supports our assumption that the re-

construction loss is useful only when concepts are strongly

tied to their spatial position. Otherwise, t is insufficient to

reconstruct the original image, and BotCL fails. Contrastive

self-supervision is the key to facilitating concept discovery.

We also explore the relationship between the number of

classes and BotCL’s accuracy over CUB200 and ImageNet.

We used small and large variants of ResNet as the back-

bone. We extracted subsets of the datasets consisting of the

first n classes along with the class IDs. Figure 3 shows that

BotCL has a competitive performance when the number of

classes is less than 200. We conclude that BotCL hardly de-

grades the classification performance on small- or middle-

sized datasets. However, this is not the case for n > 200
(refer to supp. material for larger n and different k’s).

3Implementation details are in supp. material.
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Figure 3. Classification accuracy vs. the number of classes. We used subsets of CUB200 and ImageNet with k = 50 and ResNet-18 and

ResNet-101 backbones.

Table 1. Performance comparison in classification accuracy. The

best concept-based method is highlighted in bold. BotCLRec and

BotCLCont are both BotCL but with reconstruction and contrastive

loss, respectively. For ImageNet, we used the first 200 classes.

CUB200 ImageNet MNIST Synthetic

Baseline 0.731 0.786 0.988 0.999

k-means∗ [46] 0.063 0.427 0.781 0.747

PCA∗ [46] 0.044 0.139 0.653 0.645

SENN [1] 0.642 0.673 0.985 0.984

ProtoPNet [8] 0.725 0.752 0.981 0.992

BotCLRec 0.693 0.720 0.983 0.785

BotCLCont 0.740 0.795 0.980 0.998

5.3. Interpretability

5.3.1 Qualitative validation of discovered concepts

Figure 4a visualizes aκ, showing concept κ in the image,

over MNIST. We selected 5 concepts out of 20 that are most

frequently activated (i.e., tκ > 0.5) in the training set.4 Tak-

ing digits 0 and 9 as an example, we can observe that they

share Cpts.3-5 and the only difference is Cpt.2 that lo-

cates in the lower edge of the vertical stroke of 9. This

stroke is specific to digit 9. We used BotCLRec, so we can

remove Cpt.2 before reconstruction, which generates an

image like 0 (refer to Section 5.3.3). Some concepts are in-

compatible with human intuition; yet we can interpret such

concepts (e.g., Cpt.1 may attend to the missing stroke that

completes a circle).

For CUB200, we train BotCLConst with n = 50 and

k = 20. Figure 5a shows the attention maps of an image

of yellow headed black bird. We can observe that

the attentions for Cpts.1-5 cover different body parts, in-

cluding the head, wing, back, and feet, which proves that

BotCL can learn valid concepts from the natural image as

well. Supp. material exemplifies all concepts discovered

from MNIST and CUB200.

4Cpts.1-5 are ordered based on the frequency counted in the

dataset.

5.3.2 Consistency and distinctiveness of each concept

BotCL is designed to discover individually consistent and

mutually distinctive concepts. We qualitatively verify this

by showing each concept with its top-5 activated images5

with attention maps in Figure 4b. For MNIST, different

concepts cover different patterns, and each concept covers

the same patterns in different samples (even the samples of

different classes). Figure 5b for CUB200 shows that BotCL

renders a similar behavior on the CUB200 dataset; that is,

the top-5 concepts are responsible for different patterns, and

each of them is consistent.

5.3.3 Contribution of each concept in inference

We can qualitatively see the contribution of each concept by

removing the concept and seeing the changes in the corre-

sponding self-supervision task’s output. As shown in Fig-

ure 4c, when we set the activation of Cpt.2 (responsible

for the vertical stroke of digit 9) to zero, the reconstructed

image looks like digit 0. When Cpt.1, representing the ab-

sence of the circle in digit 7, is deactivated (i.e., t1 is set to

0), a circle emerges in the upper part of the reconstructed

image. The resulting image looks more like digit 9.

For CUB200 shown in Figure 5c, we show images most

similar to the input image in Figure 5a among the dataset

in terms of t̂�t̂′, with ablating each concept. When Cpt.1

(responsible for the yellow head) is deactivated, more black-

head bird images appear in the top-8 images. Cpt.5 covers

birds’ feet and is common among most bird classes. De-

activating this concept does not change the top-8 images.

These observations suggest that although some concepts do

not contribute to classification performance, images are suc-

cessfully represented by combinations of concepts.

5.4. Quantitative Evaluation on Synthetic

One problem of the concept-based approach is the ab-

sence of established quantitative evaluations of concepts

because the choice of concepts may be arbitrary and the

same level of representability may be achieved with differ-

ent sets of concepts. A single predefined set of concepts

5For each concept κ, five images whose tκ is highest among D.
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Figure 4. Concepts for MNIST. (a) Attention maps for different input images. (b) Top-5 activated images (images in the dataset whose

tκ is largest) for each concept. (c) Images reconstructed by our concept decoder with all detected concepts (original) and with a certain

concept deactivated.
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Figure 5. Concepts learned for CUB200. (a) Visualization of 5 most important concepts for yellow headed black bird. (b) Top-5

activated concepts. (c) Image retrieval when all detected concepts were used (original) and when a certain concept was deactivated.

is not enough to evaluate the goodness of discovered con-

cepts. Literature has evaluated concepts qualitatively (as

Section 5.3) or by user study (as Section 5.5).

We decided to use Synthetic [46] for quantitatively eval-

uating concepts. The task is a multi-label classification that

involves 15 shapes. Combinations of the 5 shapes (shown

in Figure 6a, S.1 to S.5) form 15 classes, and the other 10

shapes are noises6. We deem a shape is covered by concept

κ when the shape’s area and concept κ’s area (the area with

aκ > γ for BotCL, where γ = 0.9 is a predefined threshold)

overlap. Let hsκ = 1 denote shape s overlaps with concept

κ, and hsκ = 0 otherwise. The coverage of s by concept κ
is given by

Coveragesκ = E[hsκ], (11)

where the expectation is computed over the images in the

6Images are generated with random shapes, so there can be multiple

classes (combinations of shapes) in a single image, which forms a multi-

label classification task.

test set with concept κ activated. The concepts and the 5

shapes are associated as a combinatorial optimization prob-

lem so that the sum of Coveragesκ over s are maximized.

We use k = 15 to train BotCL. Figure 6a visualizes

the concept associated with each shape7. A concept is lo-

cated by aκ for 6 images with the highest concept activa-

tions tκ. The concepts cover the associated shapes with

relatively small regions, but one concept usually covers

multiple shapes. This can be further evident in Figure 6b

that shows Coveragesκ. Cpt.8 only covers S.3, whereas

Cpt.1 and Cpt.13 covers multiple shapes.

We use three metrics other than accuracy to evaluate the

performance of concept discovery8: (i) Completeness mea-

sures how well a concept covers its associated shape in the

dataset. (ii) Purity shows the ability to discover concepts

that only cover a single shape. (iii) Distinctiveness quanti-

7Note that in this experiment, only shapes matter but not colors.
8Further details are in supp. material.
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Figure 6. Experiment on Synthetic. (a) S.1-S.5 are the five shapes of which combinations form classes. Attention maps next to each

shape are of the concept that covers the shape. (b) Coveragesκ (the concept associated with each of the five shapes is marked).

fies the difference among concepts based on the coverage.

BotCL with contrastive loss is compared9 with ACE

[14], and two baselines PCA and k-means in [46]. We ap-

ply k-means or PCA to F of all images in the dataset af-

ter flattening the spatial dimensions. The cluster centers or

the principal components are deemed as concepts. Atten-

tion maps can be computed by Euclidean distance or cosine

similarity. Once the attention maps are obtained, we follow

BotCL’s process for classification.

As shown in Table 2, BotCL shows better completeness,

distinctiveness, and accuracy scores than comparative meth-

ods. Although k-means is able to discover concepts, they

are not optimized for the target classification task, and the

performance is low. As we discussed, the concepts learned

by BotCL tend to cover more than one target shape, causing

a comparatively low purity. The cluster center of k-means

is able to capture only one kind of shape at the cost of com-

pleteness. We can also observe that all methods are affected

by concept number k, and generally a larger k ensure bet-

ter performance on all metrics. This result is not surprising,

but we confirmed that a larger k is preferable for better in-

terpretability. We detail the generation of the dataset, im-

plementation of PCA and k-means, and formal definitions

of metrics in supp. material.

5.5. User Study

Our user study is designed to evaluate BotCL with re-

alistic datasets for the challenge of human understanding.

Participants are asked to observe the test images with the

attention map for concept κ (refer to Section 5.3.2) and se-

lect some phrases in the predefined vocabulary that best de-

scribes the concept (i.e., attended regions). They can also

choose None of them if they cannot find any consistent vi-

sual elements. We recruited 20 participants for each concept

9SENN [1] and ProtoPNet [8] are not comparable. SENN’s concepts

globally cover a whole image. ProtoPNet requires way more concepts.

Table 2. Quantitative evaluation on Synthetic. Note that ACE uses

concepts for post-hoc explanation and does not use them for clas-

sification. Comp., Dist., and Acc. mean completeness, distinctive-

ness, and accuracy, respectively.

Comp. Purity Dist. Acc.

k = 5 ACE 0.662 0.274 0.084 —

k-means 0.630 0.724 0.215 0.652

PCA 0.458 0.170 0.298 0.571

BotCL 0.618 0.453 0.281 0.835

k = 15 ACE 0.614 0.221 0.151 —

k-means 0.816 0.978 0.272 0.747

PCA 0.432 0.162 0.286 0.645

BotCL 0.925 0.744 0.452 0.998

Table 3. Results of our user study.

CDR ↑ CC ↑ MIC ↓
Dataset Concepts Mean Std Mean Std Mean Std

MNIST Annotated 1.000 0.000 0.838 0.150 0.071 0.047

BotCL 0.825 0.288 0.581 0.274 0.199 0.072

Random 0.122 0.070 0.163 0.074 0.438 0.039

CUB200 Annotated 0.949 0.115 0.595 0.113 0.512 0.034

BotCL 0.874 0.156 0.530 0.116 0.549 0.036

Random 0.212 0.081 0.198 0.039 0.574 0.031

of MNIST and 30 participants for CUB200 using Amazon

Mechanical Turk.

We defined three metrics to summarize the participants’

responses. (i) Concept discovery rate (CDR): The ratio of

the responses that are not None of them to all responses. A

higher CDR means participants can find some consistent vi-

sual elements for many concepts. (ii) Concept consistency
(CC): The ratio of exact matches out of all pairs of partic-

ipants’ responses. A high value means many participants

use the same phrases to describe a concept. (iii) Mutual in-
formation between concepts (MIC): The similarity of the

response distribution, computed over all possible pairs of

concepts. This value is high when multiple concepts cover
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(a)

(b)

Figure 7. Results of ablation study. (a) Hyperparameter values vs. classification accuracy on ImageNet and CUB200. (b) Hyperparameter

values vs. classification accuracy and other metrics on Synthetic.

the same visual elements; therefore, lower is better.

For comparison, we also evaluated a manual annota-

tion10 and random scribbling for the same images. Ta-

ble 3 shows that BotCL yields good scores for all metrics

on both datasets (close to the manual annotation), show-

ing the learned concepts are interpretable for humans (from

CDR), consistent (from CC), and mutually distinct (from

MIC). More details are in supp. material.

5.6. Ablation Study

We conducted ablation studies using the default hyper-

parameters except for the one to be explored. As there is no

ground truth concept for CUB200 and ImageNet, only ac-

curacy is evaluated (Figure 7a). For Synthetic, accuracy and

the three metrics in Section 5.4 are employed ( Figure 7b).

Impact of k. A small k decreases the accuracy and other

metrics, which means the necessity of searching the mini-

mum number of concepts. Also, training tends to fail for all

datasets when k is large (detailed in the supp. materials).

The number of concepts should be tuned for each dataset.

This sensitivity is one of BotCL’s limitations.

Impact of λqua. This hyperparameter controls how

close t should be to a binary. The accuracy and the other

metrics worsen when λqua gradually increases. BotCL en-

codes some information into t (such as the area that a con-

cept occupies), which is lost for larger λqua. An extreme

value may also cause vanishing gradients.

Impact of λcon and λdis. The individual consistency

and mutual distinctiveness losses hardly affect the perfor-

mance on CUB200 and ImageNet, although we can see a

slight drop when the values are zero for CUB200. For Syn-

thetic, the performance metrics vary as they are designed

to be. Meanwhile, the accuracy is relatively insensitive

to these hyperparameters. The choice of concepts may be

10The authors annotated.

highly arbitrary, and different sets of concepts may achieve

similar classification performance. This arbitrariness may

allow the designing of dedicated concept regularizers for the

target task. However, training failures happen when they are

set to be large. A small value benefits training.

Impact of λR. Due to the lower performance of the re-

construction loss, we studied the impact of the contrastive

loss only. The contrastive loss almost always improves the

classification accuracy. The performance boost is signif-

icant in CUB200 and Synthetic. As ImageNet has more

training data, this may imply that self-supervision greatly

contributes to the learning of concepts when training sam-

ples are limited. These results demonstrate the importance

of the contrastive loss. This is interesting since this loss

uses the same labels as the classification loss.

6. Conclusion

This paper presents BotCL for learning bottleneck con-

cepts. Our qualitative and quantitative evaluation showed

BotCL’s ability to learn concepts without explicit supervi-

sion on them but through training for a target classification

task. We also demonstrated that BotCL could provide inter-

pretability on its decision and learned concepts themselves.

Limitations. One limitation of BotCL is that it requires

tuning the number k of concepts for each dataset. It might

be an interesting research direction to estimate k, e.g., based

on the number of classes in a given classification task. We

will investigate the phenomenon to mitigate this problem.
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1. Unveiling Learned Concepts
Figure 1a shows the activations of all 20 concepts for

digit 0 to 9, learned from MNIST [4]. We can see that each

digit only has a few concepts activated, e.g., digit 7 has

Cpt.3, Cpt.8, Cpt.11, Cpt.12, and Cpt.15. We also

show the top-10 activated samples for each concept (i.e., for

concept κ, the samples with the highest ten tκ’s in the train-

ing set) in Figure 1b. It can be observed that some concepts

are hardly activated. For instance, Cpt.1 has no significant

highlights, suggesting smaller tκ.

Figure 1c provides the reconstruction results by our con-

cept decoder when a certain concept is deactivated by set-

ting corresponding tκ being zero (reconstructed images

with significant visual changes are marked in red). We can

see that digit 7 turns into digit 9 when Cpt.3 is deactivated.

Figure 1d shows that this change happens consistently for

all samples of digit 7.

In addition, as our classifier is a single fully-connected

(FC) layer, we can easily obtain the contribution of concept

κ to class ω as Iωκ = tκzωκ, where zωκ is the (ω, κ)-th

element of the learnable matrix Z of the FC layer in Eq. (13)

in the main paper. Figure 1e gives the importance of each

concept for the digit 7 shown in Figure 1a. We can see that

Cpt.3 and Cpt.8 are among the most decisive concepts.

Figure 2 shows the attention map for each concept for

the input image (the left-most image) and zωκ’s for ω =
yellow headed black bird. We see that the classifi-

cation of yellow headed black bird is mainly based

on Cpt.2 and Cpt.16, which look to represent the breast

and head, respectively. Figure 3 show 10 example images

with the attention map for each concept learned from a 50-

class subset of CUB200 [12], where the 10 images are of

the highest tκ. We can see that the attended regions of most

concepts are consistent among its top-10 activated samples,

and most concepts look to represent meaningful patterns.

For example, Cpt.7 focuses on the leg, and Cpt.8 focuses

on wings.

The concepts learned on the ImageNet dataset [3] are

shown in Figure 6. We can see that, for the given sample

of Goldfish (Figure 4a), the two most important concepts

are Cpt.2 and Cpt.9. These two concepts cover semanti-

cally consistent regions in the training samples (according

to Figure 4b) and look to represent dorsal fins and a near-gill

region, respectively.

1
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Cpt.2Original 3 5 8 11 12 15 16
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Figure 1. (a) Attention map for each of 20 concepts extracted for the input (left-most) image of each digit. (b) Top-10 activated samples

for each concept. (c) Image reconstruction with one concept deactivated. (d) Image reconstruction for different samples of digit 7 with

deactivating Cpt.3. (e) Concept importance for digit 7.
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Figure 2. Concept activations for a sample of yellow headed black bird.
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Figure 4. (a) Concept activations for a sample of Goldfish and the importance of each concept. (b) Concepts learned from ImageNet

(n = 20 and k = 10).

2. Details of Experiments Settings
2.1. Normalization Function φ

The normalization φ determines the spatial distribution

of each concept, which may depend on the target domain.

For example, images for the handwritten digit recognition

dataset are typically in black and white, and only the shape

formed by strokes matters. In this case, concepts are less

likely to overlap with each other spatially. Meanwhile, nat-

ural images have colors, textures, and shapes; any (combi-

nation) of them can be a concept. Thus, concepts possibly

coincide at the same spatial position.

Let a′k = Q(cκ)
�K(F ′) (appears in Eq. (1)). For

domain with supposedly non-overlapping concepts (e.g.,

MNIST), we use φ given by

φκ({a′κ}) = σ(a′κ)� softmaxS({a′κ}). (1)

This normalization takes {a′κ} for all concepts as input,

which slightly abuses Eq. (1) of the main paper. σ is the

(element-wise) sigmoid function, and � is the Hadamard

product. softmaxS(·) is taken over all concepts at each spa-

tial position, so different concepts are less likely to be de-

tected at the same spatial position.

For domains with overlapping concepts (e.g., CUB200

and ImageNet), we only use the sigmoid function for nor-

malization as

φ(a′κ) = σ(a′κ). (2)

2.2. Weight α(y, y′)

Equation (5) in the main paper uses weight α(y, y′) to

mitigate the imbalance of class distribution. Among a mini-

batch B, the number CS of pairs with the same label is far

less than the number CD of different labels. We therefore

introduce a weight α(y, y′) given by

α(y, y′) =

{
CD/(CS + CD), for y = y′

CS/(CS + CD), otherwise
. (3)

2.3. Implementation of k-means and PCA

We use the ResNet-18 backbone to compute feature map

F ∈ R
d×h×w from all images in the training set. Let F

denote the set of all features fpq ∈ R
d in F (p = 1, . . . , h

and q = 1, . . . , w) from all images (thus, |F| = N×h×w).

We apply k-means or PCA to F . The cluster centers or the

principal components are deemed as concepts.

Let fpq ∈ R
d be features at the spatial position (p, q)

in a new image, after necessary preprocessing1. We can

1PCA’s features should be centered by subtracting the mean of F .



(a) (b)

Figure 5. The relationships between the accuracy and the hyperparameter settings. (a) Number n of classes vs. accuracy. (b) Number k of

concepts vs. accuracy.

calculate the soft-assignment aκpq of fpq to each concept

cκ. For k-means, we used

aκpq = e−‖fpq−cκ‖. (4)

For PCA, we adopt the absolute value of the cosine sim-

ilarity, given by

aκpq = abs(sim(fpq, cκ)), (5)

where sim(·, ·) is the cosine similarity and abs(·) give the

absolute value.

We aggregate aκpq for all spatial positions to form at-

tention map aκ ∈ R
l. Similarly to BotCL, we summarize

the presence of each concept into concept activation tκ by

reducing the spatial dimension of aκ as

tκ = tanh

(∑
pq

aκpq

)
. (6)

Also, the classifier is learned from the concept activations

computed for all images in the training set.

2.4. Numbers of Classes and Concepts

In Figure 5a, we evaluate the classification performance

of BotCL on subsets of ImageNet with a different number

n of classes while the number k of concepts is fixed at 50).

BotCL has a competitive performance when n is less than

200, compared to the ResNet baseline. However, BotCL

suffers from a performance drop when n is larger than 200,

which means BotCL is more suitable for small- and middle-

sized tasks.

This performance drop may be relieved by increasing k,

as indicated in Figure 5b, where we give the relationship

between the number k of concepts and the classification ac-

curacy (with n fixed at 10 for MNIST; 50 for CUB200 and

ImageNet).

On the one hand, a large k (when k ≤ 200) can help im-

prove the performance. The best performance for MNIST,

CUB200, and ImageNet is achieved when k = 100, k =
150, and k = 100, respectively. This implies that k should

be tuned for each dataset to achieve the best classification

accuracy. However, training fails when k ≥ 300. This is a

drawback of BotCL.

On the other hand, k is directly related to the granularity

of the learned concepts. That is, a larger k tends to learn

finer-grained concepts, while a smaller k leads to coarse-

grained ones. Therefore, the choice of k should be decided

by jointly considering the actual needs of accuracy as well

as the concept granularity.



S.1 S.6 S.11         

S.2          S.7           S.12

S.3 S.8 S.13

S.4          S.9 S.14

S.5 S.10         S.15
(a) (b)

Figure 6. Generation of the Synthetic dataset. (a) Defined shapes from S.1 to S.15, where (S.1 to S.5) are the shapes-of-interest, while

(S.6 to S.15) are noises. (b) Data samples.

Table 1. Selected combinations of shapes-of-interest for the Syn-

thetic dataset. “∼” denotes NOT, “xor” denotes exclusive OR,

“+” denotes OR, and “·” denotes AND. For example, ω1 presents

in an image when the image does not contain both S.1 and S.3
or contains S.4.

Label Definition

ω1 ∼ (S.1 · S.3) + S.4

ω2 S.2+ S.3+ S.5

ω3 S.2 · S.3+ S.4 · S.5
ω4 S.2 xor S.3

ω5 S.2+ S.5

ω6 ∼ (S.1+ S.4) + S.5

ω7 (S.2 · S.3) xor S.5

ω8 S.1 · S.5+ S.2

ω9 S.3

ω10 (S.1 · S.2) xor S.4

ω11 ∼ (S.3+ S.5)
ω12 S.1+ S.4+ S.5

ω13 S.2 xor S.3

ω14 ∼ (S.1 · S.5+ S.4)
ω15 S.4 xor S.5

3. Details of the Synthetic Dataset

3.1. Generation

For evaluating the performance of concept discovery, we

regenerate the Synthetic dataset using the official code from

ConceptSHAP [13] (as the Synthetic dataset is not directly

provided). As shown in Figure 6a, there are 15 different

shapes (from S.1 to S.15) in this dataset. The first 5 shapes

(S.1 to S.5) are selected as the shapes-of-interest, and the

other 10 shapes are noises. As shown Table 1, 15 different

combinations of the shapes-of-interest form 15 classes. The

color of the shapes is randomly picked from ‘green’, ‘red’,

‘blue’, ‘black’, ‘orange’, ‘purple’, and ‘yellow’. The posi-

tions of the shapes are constrained not to overlap each other.

For this, we divide an image into a 7 × 7 grid (which coin-

cides ResNet’s grid corresponding to F ) and place a single

shape in a block. We show some samples in Figure 6b.

3.2. Quantitative Metrics

We denote a set of NE test images as X = {xi|i =
1, . . . , NE} and a set of k learned concepts as C = {κ|κ =
1, . . . , k}. For each test sample x ∈ X , we denote the

ground-truth position of each shapes-of-interest S.j as sj ,

which is a set of pixels inside the block (in the original im-

age size). Meanwhile, we also define the area of each con-

cept. For BotCL, k-means, and PCA, the spatial position

of each concept is given by aκ. We apply thresholding to

aκ to spot the concept. We denote the set of pixels whose

attention value is larger than the threshold β = 0.2 by āκ.

For ACE [5], āκ includes all pixels in the super-pixels cor-

responding to the concept.

We first define hjκ for shape S.j and concept κ, which

represents if κ overlaps S.j, as

hjκ =

{
1, |sj ∩ aκ|/|sj | > γ

0, otherwise
. (7)

where ∩ is the intersection, and γ is a predefined threshold

(γ = 0.9 in our setting). Note that we do not use IoU, as a

single concept can cover multiple shapes. For example, one

of the noise shapes (S.6–S.15) can be covered by a concept

that also covers one of shapes-of-interest when the noise

shape co-occurs with the shape-of-interest. In this case, the

area of the concept is large, but this does not necessarily

mean the discovered concept is inferior as the noise shapes

are irrelevant to the target classification task. We thus de-

sign another metric named Purity to evaluate the practical

purity of the concept, which is detailed later in this section.

The coverage of s by concept κ is then given by

Coveragesκ = E[hsκ], (8)

which is computed over all images in S who contain s.

Similarly to [13], we associate each of the shapes-of-

interest to one of the concepts for evaluation. Let A de-

note a set of pairs of a shape-of-interest and a concept, i.e.,



(a) ACE

(b) k-means

(c) PCA

Figure 7. Coveragesκ (the concept associated with each of the five shapes is marked).



Figure 8. The impact of concept number k on BotCL, ACE, k-means, and PCA to classification accuracy, Completeness, Purity, ad

Distinctiveness. Note that the classification accuracy of ACE is not shown because ACE is a post-hoc method and does not do classification

by itself.

A = {(S.j, κj)|j = 1, . . . , 5}, where κj ∈ C. We can find

optimal A by

A∗ = argmaxA
∑

(s,κ)∈A
Coveragesκ. (9)

Note that in this maximization, only concepts in A are the

variables and the shapes are fixed.

Based on this association, three metrics are defined to

evaluate the concept discovery performance.

• Completeness: The most important quality of a con-

cept is whether it has the ability to capture the associ-

ated shape completely. This can be given by

Completeness =
1

|A∗|
∑

(s,κ)∈A∗
Coveragesκ (10)

• Purity: We also expect one learned concept to be

pure; that is, a concept should only cover the associ-

ated shape but not the other shapes-of-interest. Thus,

we define Purity as

Purity =
1

|A∗|
∑

(s,κ)∈A∗

Coveragesκ∑
s′ Coverages′κ

, (11)

where the summation in the denominator is computed

over all shapes-in-interest.

• Distinctiveness: We designed BotCL so that the dis-

covered concepts are distinctive. That is, any pair of

concepts should cover different sets of shapes. We thus

define distinctiveness as

Distinctiveness =

1

5|O|
∑

(κ,κ′)∈O

∑
s

|Coveragesκ − Coverages′κ′ |,

(12)

where O is the set of all possible pairs of concepts in

A∗ and the second summation is computed over all

shapes-in-interest.

3.3. Coverage of ACE, k-means, and PCA

Figure 7 shows Coverage of ACE [5], k-means, and PCA

(with k = 15). We can observe for ACE that, although some

concepts tend to be dominated by one shape (e.g., Cpt.1

captures S.5), most of the concepts are less discriminate.

For k-means, one concept captures only one shape, which

leads to high Purity. However, the completeness is not as

good as BotCL (refer to Figure 6b of the main paper). For

example, Coverage Cpt.5 over S.1 is less than 0.6. In ad-

dition, PCA does not extract enough meaningful concepts.

3.4. Impact of Number k of Concepts

As shown in Figure 8, we can observe that BotCL out-

performs others regardless of k in all metrics except Pu-

rity. When 0 ≤ k ≤ 15, all metrics mostly improve with

k. However, a larger k harms Completeness and Purity

of ACE and the Distinctiveness of PCA. When k > 15,

there are no obvious changes for all methods on all met-

rics. Interestingly, k-means achieves the best Purity for any

k. This means that features sufficiently discriminate differ-

ent shapes. However, its performance over other metrics is

mostly much lower than BotCL’s.



4. Details on User Study

4.1. Design of user study

Designing a user study for evaluating the interpretabil-

ity of unsupervised concepts is not trivial. One straight-

forward way can be to ask multiple participants to write a

description for each concept by reviewing e.g., the top-10

activated samples, but this approach poses an extra chal-

lenge in comparing free-form descriptions. Therefore, we

decided to provide a vocabulary for each dataset so that the

participants could choose some terms from it.

Table 2 shows our predefined vocabularies for MNIST

and CUB200. For MNIST, we set the number k of con-

cepts to 20, but only 8 of them are activated, and the others

are never activated as shown in Figure 1b. Therefore, we

only show the most activated images of these 8 concepts

to the participants. The vocabulary consists of two groups,

position and shape. These groups are combinatorial; the

participants choose one from each to describe the concept.

We found that some concepts cover two different elements

of the digits, so we allow the participants to specify two

pairs of position and shape. For example, a participant may

choose upper and a horizontal line as well as lower and a
(part of) curve for Cpt.11 (refer to Figure 1b, as it involves

two highlighted regions. When no consistent concept can

be found in the provided samples, participants can choose

None of them. For CUB200, all 20 concepts learned from

a subset with n = 50 classes are presented. The vocabu-

lary is defined based on the terms related to birds, falling

into five groups (i) Body Part, (ii) Color, (iii) Texture, (iv)

Action, and (v) Background. Each group requires to choose

one term. Otherwise, a participant can choose None of them
when no consistent concept can be found. We provide the

screenshot of our user interface in Figure 9 and 10.

4.2. Metrics

We designed four metrics to evaluate learned concepts

based on the user study:

• Concept discovery rate (CDR): This metric is the ra-

tio of participants who can successfully find a mean-

ingful concept in given samples, i.e., the ratio of

participants who selected terms other than None of
them. This metric directly indicates how human-

understandable the learned concepts at a conscious

level.

• Concept consistency (CC): This metric involves the

consistency of responses of a pair of participants for

one concept, measuring inter-participant differences in

the perception of a concept. Let Rgi denote participant

i’s response on group g, which is one of the terms in

the group g. CC is formulated as :

CC =
∑
g∈G

wgrg
1

|P|
∑

(i,j)∈P
I(Rgi, Rgj), (13)

where I is the indicator function that gives 1 when

Rgi = Rgj , and 0 otherwise. G is the set of all groups,

and P is the set of all possible pairs of participants.

For MNIST, we expand the groups by making all pos-

sible combinations of positions and shapes because it

is more natural to see the position group as modifiers.

Therefore, for MNIST, |G| = 1 and this single group

contains 3 × 8 = 24 terms. We introduce wg to com-

pensate for the imbalance among the number of times,

one term of each group is selected so that a group that

is used many times can contribute more to the final

score. wg is the ratio of times in which one term in

group g is selected overall responses. rg is a discount

factor for None of Them. Let η be the number of all

pairs of participants and η′g the number of pairs whose

responses for group g are both non-None of Them. We

define the discount factor as rg = 1− η′g/η.

• Mutual information between concepts (MIC): This

metric measures the similarity of the response distribu-

tion over all possible pairs of concepts. Letting H de-

note the concatenation of histograms Hg for all group

g and H ′ is the same concatenated histogram, but for

a different concept, it can be formulated as follows:

MIC = MI(H,H ′), (14)

where MI gives the mutual information between H
and H ′. Note that for MIC, the statistics (the mean

and standard deviation) are computed over all possible

pairs of concepts, whereas for the other three metrics,

they are computed over all concepts.

For comparison, we conducted an extra round of user

study with manually labeled concepts and random concepts.

To be consistent with BotCL’s setting, we used the same

number of concepts (8 for MNIST and 20 for CUB200) as

well as the number of participants (20 for MNIST and 30

for CUB200). For manually labeled concepts, we picked

out a (combination of) terms from our vocabulary to make

a concept and selected 10 images that contained the con-

cept. We then manually annotated the region corresponding

to the concept in each image. This renders a certain cap for

each metric. For random concepts, we randomly selected

10 samples for each concept and randomly generated high-

lights for each sample; therefore, there barely be a consis-

tent concept within the samples. Figures 13–16 show some

examples of manually labeled and random concepts for both

MNIST and CUB200.



Table 2. Vocabulary used in the user study.

Dataset Group Vocabulary

MNIST Position (3) upper, middle, lower

Shape (8) the end of a slanted vertical line,

the end of a vertical line,

a (part of) curve,

a (part of) right-open curve,

a circle,

a white-black-white pattern,

a horizontal line,

the edge around a curve/line

CUB200 Body Part (9) head, wing, leg, beak, crawl, breast, tail, neck, back

Color (10) red, grey, beige, black, yellow, brown,

white, blue, green, colorful

Texture (2) striped, spotted

Action (4) flying, swimming, climbing, perching

Background (5) sea, tree, sky, grass, land

We show the distributions of participants’ answers in

Figure 11 and 12. For MNIST, we can find that most con-

cepts are recognized to be meaningful. The participants

tend to choose the same term for one concept, e.g., the op-

tion for Cpt.8 mostly described by lower and an end of a
slanted vertical line. However, we also observe that Cpt.5

cannot be identified by most of the participants, as its high-

lighted regions are too weak and hardly noticeable as shown

in Figure 1b. For CUB200, we show the distribution of each

group in the first five columns, and the last column shows

the number of participants who selected None of them. We

find that most of the learned concepts in CUB200 are mean-

ingful, as the number of None of them is small for most

concepts. Participants’ responses are mostly distributed in

Body Part (especially Wing and Leg), Color (Black), and

Action (Perching).

From this user study, we would conclude that the con-

cepts learned by BotCL are recognizable, individually con-

sistent, and mutually distinct for humans, comparable with

manually labeled concepts, which means that BotCL can

potentially apply to a wide range of applications that require

interpretability.



Figure 9. User interface of the user study for MNIST.



Figure 10. User interface of the user study for CUB200.



Figure 11. BotCL’s distribution of responses for MNIST.



Figure 12. BotCL’s distribution of responses for CUB200.



Middle white-black-white pattern Bottom a circle

Bottom the end of a slanted vertical line Upper a horizontal line

Bottom a (part of) curve Upper  a (part of) right-open curve

Figure 13. Examples of manually labeled concepts for MNIST.

Figure 14. Examples of random concepts for MNIST.



Tail

Breast

Back Wing

Neck

Head

Figure 15. Examples of manually labeled concepts for CUB200.

Figure 16. Examples of random concepts for CUB200.



5. Comparison to existing XAI methods
BotCL aims at learning concepts, which is completely

different from per-pixel importance-based XAI methods.

Therefore, the explainability scores tailored for these XAI

methods are not the main concern of this paper. Yet, com-

paring BotCL with major XAI methods gives strong evi-

dence of its explainability. For this comparison, the atten-

tion of each concept can be merged into an overall explana-

tion ā by the weighted sum as

ā =
1

k

∑
κ

aκzωκ, (15)

where ω is the ground-truth class. We adopt four evaluation

metrics, including Insertion area under curve (IAUC) and

deletion area under curve (DAUC) are the metrics designed

in [7], Stability [1], and Infidelity [13].

IAUC is calculated by gradually adding pixels (in the

order of importance) to a blank image and seeing how the

prediction confidence evolves. The prediction confidence

should rise quickly if the pixel-adding process is guided by

an explanation that well understands the model and thus can

point out the most important pixels. In contrast, DAUC is

calculated by gradually removing pixels (in the order of im-

portance) from the original image. Similarly, the prediction

confidence should drop quickly if the pixel-removing pro-

cess is guided by an explanation.

Stability is quantified by Lipschitz estimation to mea-

sure how stable the explanation method performs when the

input is perturbed with minor noises. It can be formulated

as follows:

Stability =
‖Eγ(x)− Eγ(x′)‖2

‖x− x′‖2 , (16)

where x is the original input and x′ is the perturbed input.

γ is a model (i.e., a composition of feature extractor Ψ and

classifier f , and Eγ is the function to generate an explana-

tion of model γ. Adding minor white noise to the input

image should not have a significant impact on the predic-

tion result. However, the explanation may change a lot if

the method is instability.

Infidelity measures the consistency between input per-

turbations and consequent significant explanation changes.

It is formulated as follows:

Infidelity = EI∼μI
[(I�Eγ(x)−(γ(x)−γ(x−I)))2], (17)

where I is a significant perturbation to the input with one

probability measure μI , and the variables (i.e., I and Eγ) are

vectorized if necessary. The paper [13] provides multiple

options for μI , and we chose μI = N (0, σ2).
In addition, the explainability of the existing XAI meth-

ods is evaluated with the baseline ResNet [6] model, which

uses a single FC as the classifier, while our results are ob-

tained on BotCL, which uses the same ResNet model (with-

out the FC classifier) as the backbone. In Table 3, we can

see that BotCL achieves the best scores in stability and in-

fidelity, and is among the best for IAUC/DAUC. BotCL is

slightly worse than the best results in IAUC is that BotCL

requires the activations of enough number concepts to lead

to the correct classification, for which more pixels are nec-

essary. Similarly, BotCL works well even if some concepts

are not activated. More pixels need to be masked to change

the output, which implies BotCL’s robustness.



Table 3. Evaluation of BotCL and existing XAI methods using explainability metrics.

CUB200 ImageNet

Methods Stability ↓ Infidelity ↓ IAUC ↑ DAUC ↓ Stability ↓ Infidelity ↓ IAUC ↑ DAUC ↓
LIME [8] 0.175 0.150 0.664 0.133 0.211 0.398 0.624 0.154

CAM [14] 0.170 0.138 0.695 0.114 0.208 0.372 0.678 0.135

GradCAM [9] 0.155 0.142 0.712 0.110 0.180 0.358 0.682 0.130

GradCAM++ [2] 0.168 0.135 0.731 0.099 0.188 0.360 0.687 0.121

Score-CAM [11] 0.160 0.122 0.725 0.102 0.176 0.355 0.697 0.118
SS-CAM [10] 0.166 0.130 0.698 0.109 0.191 0.377 0.675 0.133

BotCL 0.102 0.051 0.718 0.105 0.125 0.341 0.680 0.131
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