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Abstract
Few-shot learning (FSL) approaches, mostly neural network-based, assume that pre-trained knowledge can be obtained
from base (seen) classes and transferred to novel (unseen) classes. However, the black-box nature of neural networks makes
it difficult to understand what is actually transferred, which may hamper FSL application in some risk-sensitive areas. In
this paper, we reveal a new way to perform FSL for image classification, using a visual representation from the backbone
model and patterns generated by a self-attention based explainable module. The representation weighted by patterns only
includes a minimum number of distinguishable features and the visualized patterns can serve as an informative hint on
the transferred knowledge. On three mainstream datasets, experimental results prove that the proposed method can enable
satisfying explainability and achieve high classification results. Code is available at https://github.com/wbw520/MTUNet.

Keywords Deep learning · Explainable AI · Few shot learning · Learning representation · Attention

1 Introduction

Few-shot learning (FSL) is of great significance for at least
the following two scenarios [1]: First, FSL can relieve
the heavy needs for data gathering and labelling, which
can boost the ubiquitous use of deep learning techniques,
especially for users without enough resources. Second, FSL
is an important solution for applications in which rare
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cases matter or image acquisition is costly because of high
operation difficulty or ethical issues. Typical examples of
such applications include computer-assisted diagnosis with
medical imaging, and classification of endangered species.

An FSL task is typically formulated as follows: Given
support images with corresponding labels and a query
image without any label, it requires to finding the label of
the query image based on the labels of support images. With
this formulation, most FSL methods train the model on base
(seen) classes and evaluate the model on novel (unseen)
classes. It is assumed that knowledge can be well extracted
from base classes and transferred to novel classes. However,
this is not always the case. The knowledge in a pre-
trained backbone convolutional neural networks (CNNs),
which computes the features of an input image, may
sometimes be useless when novel classes have significant
visual differences from base class images [2]. For example,
having sheep always on grass and cats mostly in indoor
environments, FSL models may classify an image showing
a cat on grass as the class of “sheep” because “cat” has
a very large visual difference with all base classes while
owning a similar background with one base class. What
makes matters worse is that we even have no way to see if
the visual differences between the base and novel classes
are significant for an FSL model. This raised one essential
question: Is there any way to see what is transferred from
base classes to novel classes? Most research on FSL tasks
do not pay attention to what is extracted from the backbone
CNNs.
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In this study, we redesign the mechanism of knowledge
transfer for FSL tasks, offering an answer to the above ques-
tion. Our approach is inspired by what humans seemingly do
when trying to recognize a rarely seen object. That is, we usu-
ally try to find some patterns in the object and match them
in a small number of previously seen examples in our mem-
ory. We mimic this process by designing a self-explainable
attention module, and propose a new FSL method, named
a match-them-up network (MTUNet), which consists of a
pattern extractor (PE) and pairwise matching (PM).

The PE is designed to find discriminative patterns for
image representation. The knowledge transferred from the
base classes to the novel classes is thus the learned patterns.
Owing to the explainability of the PE, the extracted patterns
themselves can be easily visualized by exemplifying them
in the images as shown in Fig. 1(a). This directly means
that we have a way to see what is transferred in our FSL
pipeline. The patterns extracted from each of the support
and query images are aggregated to form discriminative
image representation, which is shown as overall attention
in Fig. 1(b) and is used for matching. In Fig. 1(b), the
visualization of aggregated patterns collectively shows a
consistent and meaningful clue for the images of the same
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Fig. 1 Few-shot learning using pair-matching with the pattern
extractor (PE). Images are from the mini-ImageNet dataset [3]

class. For example, the PE shows strong attention on the
neck of the goose in the second column, which is consistent
in both support and query images (even for sub-images
in the latter). Image representation based on the patterns
learned from base classes makes matching between a pair of
images much easier by incorporating only a small number
of regions to pay attention to.

On top of the PE, PM is adopted to determine whether
image pairs belong to the same class. Each pair consists of
one image from the support set and one image from the
query set. The category of the support image that has the
highest similarity score is regarded as the query image’s
category. Together with the PE, MTUNet can provide a
matching score to further relate the visualization and model
decision.

The main contributions of our work include:

• We propose a new explainable FSL model that
achieves high classification accuracy, qualitatively and
quantitatively showing its explainability.

• We design the PE module to spatially filter the
original image’s features provided by a backbone CNN,
keeping only informative regions of specific patterns
that contribute to better FSL classification performance.
Visualization of these regions plays a central role in
MTUNet’s explainability as it presents the model’s
basis of prediction.

• A PM mechanism that can relate the visual explanations
with the model decision using matching scores, which
may help find potential prediction failures.

• Our method combines several techniques and concepts,
e.g., FSL, attention, feature representation, and explain-
able AI, which can inspire future research.

This paper is an extension of a four-page CVPR2021
workshop paper [4]. In addition to more detailed description
of our method (Section 3), extensive literature review
(Section 2), discussion based on our experimental results
(Section 4.5), and limitations and future works (Section 4.5).
The extension includes technical contributions as follows:
(1) We introduce the PE pre-trainig, which allows better FSL
classification performance. We also redesigned and detailed
our methodology (e.g. in Section 3), re-did all experiments
with redesigned method (Section 4.3), and additional figures
(e.g. Fig. 1) are added for easier understanding. (2) We
add new experimental results over another dataset, CIFAR-
FS, which show superior classification performance than
existing methods and validate the generalizability of our
method to different datasets. (3) To compare with previous
XAI methods, we design an experiment using existing
XAI metrics in Section 4.4.2. The results quantitatively
demonstrate the explainability of the proposed method. (4)
We add a discussion based on our experimental results
(Sections 4.5.1 and 4.5.2).
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2 Related work

2.1 Few-shot learning

Recently, due to the availability of a sufficient number of
labelled images, deep neural networks have achieved outstand-
ing performance on various classification tasks. Such large
datasets usually require a large amount of effort for their cre-
ation, and some tasks, such as medical tasks [5, 6], may not
inherently have enough supervising signals. For these tasks,
we require a new paradigm that allows training a model with
a small number of labelled images. The popular FSL model
[3, 7, 8] serve as a testbed for certain aspects of such small
tasks. Recent efforts toward FSL are summarized as follows.

Image embedding and metric learning Many works focus
on transforming images into vectors in embedding space, in
which the distance between a pair of vectors represents the
conceptual dissimilarity. A Siamese network [9] uses a shared
feature extractor to produce image embeddings for both
support and query images. The weighted �1 distance is used
for the classification criterion. Metric learning [3, 7] can
offer a better way to train the mapping into the embedding
space. Some works try to improve the discriminatory power
of image embeddings. Simple Shot [10] applies an �2

normalization and a central method to make the distance
calculation easier. Instead of physical distance calculation,
some works use a multi-layer perceptron (MLP) to
parameterize and train similarity metrics [11–13]. A recent
work [14] uses a two-stream network for better feature
representation, which improves the FSL performance.

Meta-learning Another major approach to FSL is to optimize
models so they can rapidly adapt to novel classes. The
method in [15] fine-tuned the feature extractor using support
images of novel classes. However, due to very few support
samples, overfitting limited the model’s success. MAML
[16] and its extensions [17, 18] train initial parameters, and
through one or more gradient adjustment steps from the
initial parameters, they can be easily adapted to a target task
with only a small amount of data. Besides training good initial
parameters, Meta-SGD [19] trains the update direction and
step size. UDS [20] adopted an unsupervised meta-learning
algorithm to localize and select semantically meaningful
regions in feature maps, which enables better FSL perfor-
mance. A recent work [21] extends FSL into a multi-label
scenario, which is meaningful to real-world applications.

Data augmentation Solving an FSL problem by augmenting
training data is straightforward and easy to understand. Data
augmentation aims at introducing immutability to models
to capture information at both image and feature levels [22,
23]. There are also some works that try to use samples that

are weakly labelled or unlabelled [24, 25]. ICI [26] intro-
duces a judgment mechanism to enhance the training set by
utilizing unlabelled data with confidently predicted labels.

Transductive or Semi-supervised Paradigm Transductive or
semi-supervised approaches [27, 28] have made great
progress in the past few years. They use the statistics of
query examples or statistics across FSL tasks, assuming
that all novel images for classification are accessible. We
only employ the original inductive paradigm to explore
explainable feature extraction, but our idea can be easily
adapted to a transductive paradigm.

2.2 Zero-shot learning

Zero-shot learning (ZSL) is another challenging task as
there is no sample available for the unseen classes. An
early attempt [29] proposed an attribute-based classification
using human-specified high-level labels. The unseen classes
can be predicted based on the combination of detected
attributes, without training with the classes. Some methods
were developed to utilize inter-class relationships through
graph neural networks [30, 31]. Wang et al. [30] adopt
a graph to use both semantic embeddings and categorical
relationships to generate classifiers. OCITN [32] is designed
to deal with the situation where training data with only one
class. The target is to determine if the input data is seen
class or unseen class. Recently, a cluster-based ZSL method
[33] was proposed, which expands the idea of ZSL tasks to
multivariate binary classification problem.

Our method employs a similar idea to attribute-based
classification. PE is designed to learn and extract a certain
set of patterns that can describe all possible classes in
episodes of the FSL classification task.

2.3 Explainable AI

Deep neural networks are considered black-box technology,
and explainable artificial intelligence (XAI) is a series
of attempts to unveil them. Most XAI methods for
classification tasks are based on back-propagation [34–36]
or perturbation [37]. These methods are post-hoc, which
can only provide explanations outside model training. There
are also intrinsic methods that aim to explain the model
decision spontaneously. A new type of intrinsic XAI, coined
SCOUTER [38], has been proposed, which applies a self-
attention mechanism [39] to the classifier. This method can
extract the attention for each class during training, which
makes classification results explainable.

XAI methods have been widely applied to many deep
learning tasks [40], however, a few works [4, 41–43] have
tried XAI for FSL tasks. Geng et al. [42] uses a knowl-
edge graph to make an explanation for zero-shot tasks.
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Sun et al. [41] adopt layer-wise relevance propagation
(LRP) [44] to explain the output of a classifier. StarNet
[43] realizes visualization through heat maps derived from
back-projection. These methods are based on the idea of
XAI for general classification tasks, which are not suitable
for the training rule of FSL (sampling support and query
[3]). Most of them are not evaluated on FSL benchmark
datasets, which make these methods not comparable. Thus,
an FSL model which has both high classification accuracy
and interpretability is important.

In this study, we adopted the intrinsic approach of XAI to
explore a new explainable FSL paradigm. Compared to pre-
vious FSL methods, MTUNet has PE, which is based on the
self-attention mechanism [45], that can extract informative
regions to improve FSL classification performance. Another
difference from previous FSL is MTUNet’s explainability.
Through the combination of PE and PM, MTUNet can
provide insight into why the model classified a query image
into a certain unseen class (refer to Section 4.4). Our
experiments showed that explanation by MTUNet can help
find potential prediction failures, which is important for
some risk-sensitive domains like medical applications.

3Material andmethods

3.1 Problem definition

This study addresses an inductive FSL task (c.f., and a
transductive task [27, 28]), in which we are given two
disjointed sets Dbase and Dnovel of samples. The former is
a base set of many labelled base class images whereas the
latter is a novel set of a few labelled novel class images,
where the disjointed sets of base and novel classes are

denoted by Cbase and Cnovel, respectively. The FSL task is
to find a mapping from a novel image x ∈ Dnovel to the
corresponding class y ∈ Cnovel, with the images in Dbase and
the corresponding labels available in training.

The literature typically uses the K-way N-shot episodic
paradigm for training/evaluating FSL models. For each
episode in training, we sample a support set S =
{(xkn, ykn) | k = 1, . . . , K, n = 1, 2, . . . , N} and a query
image xq from query set Q. The support set contains N

images for each of K classes in Cbase and serves as the basis
for classification of a query image into the same K classes.

Our FSL model is trained to find a match between a
query image and a support image in S, i.e., the query image
is classified with the class of the matched image in S.
Evaluation can be performed within the same paradigm by
sampling query and support sets from Dnovel.

3.2 Overview

The overall process is illustrated in Fig. 2. In each episode,
we extract feature map F = fθ (x) ∈ R

c×h×w from each
image x in S and Query image using the CNN backbone
fθ , where θ is the set of learnable parameters. F is then fed
into the pattern extractor (PE) module, fφ , with learnable
parameter set φ. This module provides attention A =
fφ(F ) ∈ R

z×l over F . Our pairwise matching (PM) module
uses an MLP to compute a score that indicates how likely
query image xq is to belong to one of the K classes in S.

The PE plays a major role in the learning of FSL tasks.
It is designed to learn a transferable attention mechanism,
which finds common patterns that are shared among
different episodes sampled from Dbase. Consequently the
patterns are more likely to be shared among Dnovel given
that Dbase and Dnovel are from similar domains.
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PE Module

PE Module
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Fig. 2 Overall structure of MTUNet. One query is processed by the
CNN backbone and pattern extractor (PE) to provide exclusive pat-
terns and then turned into overall attention. The query is concatenated

to each support to make a pair for final discrimination through pair-
wise matching (PM). The dotted line represents each support image
undergoing the same calculation as the query
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3.3 Pattern extractor

Figure 3 shows the structure of our PE module. The
input feature map F is first fed into a 1 × 1 convolution
layer followed by a ReLU nonlinearity to squeeze the
dimensionality of F from c to d . The spatial dimensions
of the squeezed features are flattened to form F ′ ∈ R

d×l ,
where l = hw. To maintain the spatial information, position
embedding P [38, 46, 47] is added to the features, i.e.,
F̃ = F ′ + P .

The self-attention [45] mechanism provides the attention
over F for the spatial dimension using the dot-product
similarity between a set of z patterns and F̃ after nonlinear
transformations. The PE repeats this process T times by
updating the patterns with a gated recurrent unit (GRU)
to refine the attention. That is, let W(t) ∈ R

z×d denote
the patterns in the t-th repetition, where t = 1, 2, . . . , T

and W(1) = W is the learnable parameters. The nonlinear
transformations for W(t) and F̃ are given by

gQ(W(t)) ∈ R
z×d , gK(F̃ ) ∈ R

d×l . (1)

The attention is given using a normalization function ξ as

Ā(t) = gQ(W(t))gK(F̃ ) (2)

A(t) = ξ(Ā(t)) ∈ (0, 1)z×l , (3)

where the patterns W(t) is updated by

U(t) = A(t)F ′� (4)

W(t+1) = GRU(U(t), W(t)). (5)

Let SoftmaxR(X) and σ(X) be a softmax function
over respective row vectors of matrix X and sigmoid
respectively. MTUNet modulates this map by

A(t) = ξ(Ā(t)) = σ(Ā(t)) � SoftmaxR(Ā(t)), (6)

which suppresses weak attention over different patterns at
the same spatial location, where � is the Hadamard product.
The function enforces the network to find more specific yet
discriminative patterns with less redundancy among them,
thus giving more pinpoint attention. This ensures the learned
patterns are exclusive. As shown in Fig. 1(a), the attention
map responds to a single pattern that rarely includes its
peripheral region.

The input feature F is finally described by the overall
attention A′ corresponding to the extracted patterns, i.e.,

A′ = 1

z
A(T )1z (7)

where 1z is a row vector with all z elements aggregated
being 1. A′ is reshaped from l into the same spatial
structure as F . Then the features corresponding to the
overall attention are extracted and average pooled over the
spatial dimensions as

V = 1

hw

∑

ij

A′
ijFij , (8)

where A′
ij ∈ R and Fij ∈ R

c are the elements of A′
and F at the (i, j )-th spatial location (i = 1, 2, . . . , h and
j = 1, 2, . . . , w).

Conv&ReLU

Patterns

Aggregate Pooling

GRU

Reshapeξ

Iterated for times

PE Module

+

Reshape

.

.

.

Fig. 3 The structure of our pattern extractor module
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3.4 Pairwise matching

An FSL classification can be solved by finding the
membership of a query in one of the given support images.
Some FSL methods use metric learning [3, 7] to find
matches between a query and the supports, and the cosine
similarity or the �2 distance are typical choices [10, 48].
Learnable distances are another popular choice for metric
learning-based FSL methods [11–13]. We use a learnable
distance with an MLP (refer to Section 4.5.2).

Let V q and {Vkn} be features obtained by applying the
PE to query image xq ∈ Q and support images {xkn} in
S, respectively, where the subscripts k = 1, 2, . . . , K and
n = 1, 2, . . . , N stand for the n-th image of class k in the K-
way N-shot episodic paradigm. For N > 1, the average over
the N images are taken to generate representative feature
V̄k; otherwise (i.e., N = 1), V̄k = Vk1. For computing
similarity score s between V q and V̄k , we use MLP fγ with
learnable parameters γ :

s(V q, V̄k) = σ(fγ ([V q, V̄k])), (9)

where [·, ·] is concatenation. xq is classified into class k∗
with maximum s over k, i.e.,

k∗ = arg max
k

s(V q, V̄k). (10)

For a K-way task, our pairwise matching runs the similarity
computation K times per query image, which is typical
computational complexity for for similarity-based methods,
such as [7].

3.5 Training

For training, we sample a set Q = {(xq
km, y

q
km) | i =

1, . . . , K × M} of M query images for K classes as well
as set S of support images from Dbase for each episode,
following the K-way N-shot episodic paradigm. We train
the model with the cross-entropy loss:

L = −
∑

(xq,yq)∈Q

K∑

k=1

y
q
k log(s̄(V q, V̄k)), (11)

where y
q
k is the k-th element of one-hot vector yq for

representing the corresponding label of image xq.

4 Experiments

4.1 Datesets

We evaluate our approach on three commonly-used datasets,
mini-ImageNet [3], tiered-ImageNet [22], and CIFAR-FS
[49]. Mini-ImageNet consists of 100 classes sampled from
ImageNet with 600 images per class. These images are

divided into the base Dbase, novel validation Dval, and novel
test Dtest sets with 64, 16, and 20 classes, respectively,
where both Dval and Dtest corresponded to Dnovel in
Section 3.1. The images in miniImageNet are of size 84×84.
As all recent work, we adopt the same splits of [3] Tiered-
ImageNet consists of ImageNet 608 classes divided into
351 base classes, 97 novel validation classes, and 160 novel
test classes. There are 779,165 images with size 84 × 84.
CIFAR-FS is a dataset with images sampled from CIFAR-
100 [50]. This dataset contains 100 classes with 600 images
each. We follow the split given in [49], which are 64, 16, and
20 classes for the base, novel validation, and novel test sets.

4.2 Experimental setup

Following most of the literature, we evaluate MTUNet on
10,000 episodes of 5-way classification created by first ran-
domly sampling 5 classes from Dbase and then sampling
support and query images of these classes with N = 1 or 5
and M = 15 per class. We report the average accuracy over
K × M = 75 queries in the 10,000 episodes and the 95%
confidence interval. We employ three CNN architectures
as our backbone fθ , which are often used for FSL tasks,
namely Conv-4 [7], WRN-28-10 [51] and ResNet-18 [52].
For ResNet-18, we remove the first two down-sampling
layers and change the kernel of the first 7 × 7 convolu-
tional layer to 3 × 3. We use the hidden vector of the last
convolutional layer after ReLU as feature maps F , where the
numbers of feature maps are 512 and 640 for ResNet-18 and
WRN-28-10 respectively. There are three steps for training
MTUNet.

Pre-training of backbone The pre-training of the backbone
CNNs is important for our PE module. We adopted a
distance-based strategy, which is similar to SimpleShot [10].
We train the backbone CNNs with all images in Dbase. The
performance of a simple nearest-neighbour-based method is
then evaluated over Dval with 2,000 episodes of 5-way FSL
tasks, and the best model is adopted. The learning rate for
training starts at 10−3 and is divided by 10 every 20 epochs.
We train the models for 50 epochs.

Pre-training of PE As for the PE module pre-training, we set
d to 64, and the number T of the update is set to 3. The num-
ber z of the patterns is empirically set to 1/10 of the number
of classes in the base set, which are 7, 36, and 7 for the
mini-ImageNet, tiered-ImageNet, and CIFAR-FS dataset,
respectively. Corresponding number of classes’ (subset of
Cbase) images are selected to pre-train the module as a
normal classification task similar to [38]. The importance
of this choice is discussed in Section 4.5.1. Both gQ and
gK have three FC layers with ReLU nonlinearities between
them. All the parameters in the backbone fθ are fixed. The
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learning rate for training starts with 10−4 and is divided by
10 at the 40th epoch, and the total number of epochs is 60.

Training the whole network For training the whole
MTUNet, the learnable parameters in the backbone CNNs
and PE are optimized with a small learning rate of 10−5.
We completely implement 20 training epochs. In a single
training epoch, we sample 1,000 episodes of 5-way tasks.
Other learnable parts of the model are trained to start with
an initial learning rate of 10−4, which is divided by 10 at the
10th epoch. We save the model with the best performance
on 2,000 episodes evaluation sampled from Dval.

Our model is implemented with PyTorch, and AdaBelief
[53] is adapted as an optimizer. Input images are resized
to 80 × 80, and we applied data augmentation including

random flip and an affine transformations, following [10]. A
GPU workstation with two NVIDIA Quadro GV100 (32GB
memory) GPUs is used for all experiments. Training 20
epochs on the mini-ImageNet dataset took approximately
19 minutes with a single NVIDIA V100 GPU. This
computational cost is not high. We attested that a consumer-
grade GPU can easily reproduce our results.

4.3 Few-shot classification results

MTUNet is compared with some popular FSL methods.
We exclude methods in semi-supervised and transductive
paradigms, which use the statistics of novel set across
different FSL episodes. Besides the classification accuracy,
we also consider the explainability of the raw image features

Table 1 Average accuracy of
10000 episodes of 5-way tasks
on the mini-ImageNet dataset
test set

Approach Backbone One shot Five shots

SimpleShot (UN) [10] Conv-4 33.17±0.17 63.25±0.17

MetaLSTM [17] Conv-4 43.44±0.77 60.60±0.71

MatchingNet [3] Conv-4 43.56±0.84 55.31±0.73

MAML [16] Conv-4 48.70±1.84 63.11±0.92

LLAMA [54] Conv-4 49.40±1.83 –

ProtoNet [7] Conv-4 49.42±0.78 68.20±0.66

PLATIPUS [55] Conv-4 50.13±1.86 –

GNN [12] Conv-4 50.33±0.36 66.41±0.63

RelationNet [13] Conv-4 50.44±0.82 65.32±0.70

Meta SGD [19] Conv-4 50.47±1.87 64.03±0.94

AD2AML+IR [56] Conv-4 54.57±1.77 –

RCNet [57] Conv-4 54.85±0.84 68.92±0.77

MTUNet (w/o PE) Conv-4 51.20±0.32 65.88±0.39

MTUNet Conv-4 54.01±0.37 69.43±0.46

MAML [16]† ResNet-18 49.61±0.92 65.72±0.77

R2-D2 [49]† ResNet-18 51.20±0.60 68.20±0.60

RelationNet [13]† ResNet-18 52.48±0.86 69.83±0.68

ProtoNet [7]† ResNet-18 54.16±0.82 73.68±0.65

MTUNet (workshop) [4] ResNet-18 55.03±0.49 70.22±0.55

Gidaris [48] ResNet-15 55.45±0.89 70.13±0.68

SNAIL [8] ResNet-15 55.71±0.99 68.88±0.92

AdaCNN [58] ResNet-18 56.88±0.62 71.94±0.57

SimpleShot (UN) [10] ResNet-18 57.81±0.21 80.43±0.15
MTUNet (w/o PE) ResNet-18 55.27±0.33 67.51±0.39

MTUNet ResNet-18 58.13±0.44 75.02±0.43

MTUNet (workshop) [4] WRN 56.52±0.43 71.93±0.40

SimpleShot (UN) [10] WRN 57.26±0.21 78.99±0.14

Qiao [59] WRN 59.60±0.41 73.74±0.19

MTUNet (w/o PE) WRN 56.41±0.33 69.55±0.39

MTUNet WRN 60.12±0.45 79.23±0.42

The results of our method are in orange
† Results are reported in [10]
The bold line is used to separate different settings for comparison
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Table 2 Average accuracy of
10000 episodes of 5-way tasks
on the tiered-ImageNet dataset
test set

Approach Backbone One shot Five shots

Reptile [18]† Conv-4 48.97±0.21 66.47±0.21

SimpleShot (UN) [10] Conv-4 51.02±0.20 68.98±0.18

MAML [16] Conv-4 51.67±1.81 70.30±0.08

ProtoNet [7]† Conv-4 53.31±0.20 72.69±0.74

RelationNet [13] Conv-4 54.48±0.93 71.32±0.78

AD2AML+IR [56] Conv-4 54.97±1.92 –

RCNet [57] Conv-4 58.42±0.96 74.17±0.78
MTUNet (w/o PE) Conv-4 57.02±0.58 70.94±0.52

MTUNet Conv-4 59.12±0.61 73.31±0.65

MTUNet (workshop) [4] ResNet-18 61.27±0.50 77.82±0.41

SimpleShot (UN) [10] ResNet-18 62.69±0.22 79.69±0.15

MTUNet (w/o PE) ResNet-18 60.21±0.42 77.26±0.41

MTUNet ResNet-18 63.83±0.53 82.07±0.46

MTUNet (workshop) [4] WRN 62.40±0.51 80.05±0.46

Meta SGD [19]† WRN 62.95±0.03 79.34±0.06

SimpleShot (UN) [10] WRN 64.35±0.23 85.69±0.15

LEO [60] WRN 66.33±0.05 81.44±0.09

MTUNet (w/o PE) WRN 62.11±0.30 78.40±0.35

MTUNet WRN 66.52±0.48 86.17±0.41

The results of our method are in orange
‡ Results are reported in [49]
The bold line is used to separate different settings for comparison

for the backbone CNNs. Thus, we do not adopt any post-
processing methods like �2 normalization in [10]. For
testing the model, we report our best model on Dval by
randomly sampling 10,000 1-shot and 5-shots tasks from
Dtest in Tables 1, 2 and 3 over the three datasets. During
testing, taking a 1-shot task for example, our model assigns
the query image to one of the classes of support images. It
is realized by (i) extracting regions from each of query and

support images and extracting features from these regions
with PE and (ii) matching the features with PM. The results
of MTUNet (w/o PE) means the model trained without the
PE module. This model has a structure similar to ProtoNet
[7] and is used to evaluate the impact of the PE.

As seen in the tables, the prediction accuracy of MTUNet
outperforms most existing FSL methods in both one-shot
and five-shots settings. This proves that our model can

Table 3 Average accuracy of
10000 episodes of 5-way tasks
on the CIFAR-FS dataset test
set

Approach Backbone One shot Five shots

RelationNet [13]‡ Conv-4 55.00±1.00 69.30±0.80

ProtoNet [7]‡ Conv-4 55.50±0.70 72.00±0.60

MAML [16]‡ Conv-4 58.90±1.90 71.50±1.00

GNN [12]‡ Conv-4 61.90 75.30

R2-D2 [49] Conv-4 65.30±0.20 78.30±0.20
MTUNet (w/o PE) Conv-4 62.55±0.51 74.62±0.54

MTUNet Conv-4 65.81±0.65 77.42±0.60

MTUNet (w/o PE) ResNet-18 65.32±0.37 79.54±0.34

MTUNet ResNet-18 67.47±0.43 82.81±0.41

MTUNet (w/o PE) WRN 67.29±0.39 82.98±0.35

MTUNet WRN 70.49±0.46 86.55±0.44

The results of our method are in orange
The bold line is used to separate different settings for comparison
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achieve high prediction accuracy for FSL tasks. We also find
that the different architectures of the backbone CNNs affect
the performance. With simple backbone structure, Conv-4
tends to produce a lower performance. The variants with
WRN always have a better performance than those with
Conv-4 and ResNet-18. Asides from the difference in the
network architecture, the size of feature maps may be one
of the factors. On the mini-ImageNet dataset, the WRN
variants have 20 × 20 feature maps, while the ResNet-18
variants have 10 × 10. Such larger feature maps not only
provide more information to the PM module but also give
a better basis of patterns as higher resolutions may help
find more specific patterns. The results also demonstrate
the learning ability of the PE. For all experiment settings,
the PE can improve the model accuracy by approximately
2%-4% more than without the PE. This module filters
useless features and focus on informative regions as it is
designed to be. We will further analyse the importance of
pattern number z and PE pre-training categories selection
for training MTUNet in Section 4.5.1.

4.4 Explainability

In this section we will qualitatively and quantitatively
evaluate the explainability of MTUNet.

4.4.1 Qualitative evaluation

In addition to the classification performance, MTUNet
is designed to be explainable in two different aspects.
First, pattern-based visual explanation. MTUNet’s decision

is based on certain combinations of learned patterns.
These patterns are localized in both query and support
images through A(T ), which can be easily visualized. This
visualization offers intuition on the learned patterns and
how much these patterns are shared between the query
and support images. Second, visualization of pairwise
matching scores. Thanks to the one-to-one matching
strategy formulated as a binary classification problem in
(9), the distributions (or appearances) of learned patterns in
query and support images give a strong clue on MTUNet’s
matching score s. In this combination, we may find the
potential failure reasons by observing the matching matrix.

Pattern-based visual explanation MTUNet’s decision is
based on learned patterns, i.e., it is solely based on how
much shared patterns (or features) appear in both query
and support images. This design in turn means that, by
pinpointing each pattern in the images, we can obtain an
intuition behind the decision made by the model. This can
be done by merely visualizing A(T ).

Figures 4(a) and (b) show a pair of support and
query images in the mini-ImageNet dataset for a 5-
way task. The pairs (a) and (b) are of classes lock
and horizontal bar, respectively. The second column
shows the visualization of the aggregated overall attention,
given by A′. The third to ninth columns are the visualization
of the regions corresponding to the learned patterns in A(T )

(i.e., the i-th row vector of A(T ) represents the appearance
of the i-th learned pattern at the respective spatial location).

For (a) with class lock, the support image is a small
gold combination lock used for storage cabinets or post

Fig. 4 Visualization of each pattern and the average features for a
sampled task in the mini-ImageNet dataset. (a) is the lock class and
(b) is the horizontal bar class. Overall is the overall attention among all

patterns. The third to ninth columns are the visualization of the regions
corresponding to the learned patterns



B. Wang et al.

boxes. Among all 7 patterns, only pattern 5 shows a
strong response, whereas the others are not observed.
We can see that pattern 5 pays attention to the discs of
the lock in the support image. It also provides a strong
response to the words on the left which shows similar
morphological characteristics. The query image in (a) is
a black combination lock often used for bicycles. The
attention maps show almost the same distributions as the
support, that is, only pattern 5 has a response on the
discs. From these visualizations, we can infer that pattern 5
represents the character of the discs. MTUNet successfully
finds a shared pattern although these two locks have a
different appearance.

For (b), the support image is a gymnast wearing red.
Multiple patterns are observed in the image. We can see
that the visualization of pattern 1 identifies part of the
human body (head), and pattern 3 appears around the hands
grabbing the horizontal bar. The query image is a gymnast in
blue. Patterns 1 and 3 respond in a similar way to the support
image. Patterns 4 and 5 appear in the background and
around other parts of the body, however, their responses are

relatively weak compared to patterns 1 and 3. Patterns 1 and
3 may be responsible for human heads and hands grabbing
the horizontal bar, leading to the successful classification of
the unseen classes.

Visualization of pairwise matching scores Figure 5 shows
the visualized overall attentions A′ and corresponding origin
support and query images (a 5-way 1-shot task on the mini-
ImageNet dataset). Through the pairwise matching module,
the FSL task is cast into a binary classification problem.
The output for each pair is a value between 0 and 1 due
to the sigmoid function, whereas the scores are shown as
percentages in the figure. The support images are marked
with different colors to represent the classes. The thickness
of coloured lines shows higher or lower matching score
between each support and query. Only pairs with a score
over 0 are shown in the figure.

Among all pairwise combinations, the combination of
the support and query images of the catamaran obtains a
full score (100%). The visualization of the overall attention
covers the hulls, especially the masts, in both images, which

Fig. 5 Matching point of one
sampled task in the
mini-ImageNet dataset. We only
show the connection between
pairs with a score over 0, and the
scores are shown as percentages
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are the main characteristics of this class. Class goose gets
a low matching score. The query is a close-up of a goose on
the ground from its front side, which captures the goose’s
blackhead or beak. The support image is an overall view
of a goose about to fly and the visualization of the overall
attention captures the leg. With this combination, finding a
shared pattern may not be easy, although these two extracted
patterns are both representative parts of a bird. This problem
stems from differences in viewing angles, which can be
relieved in 5-shot tasks, giving more support from different
viewing angles. Surprisingly, the query image for goose
obtains 81% for the support image for beetle. This may
suggest that one of the patterns responds to black regions
and this pattern is solely used as the clue of goose. This is
a negative result for the FSL task but clearly demonstrates
MTUNet’s explainability on the relationship between visual
patterns and the matching scores.

We also provide more visualization samples in Appendix A.

4.4.2 Quantitative evaluation

Our method is designed to interpret FSL tasks, and we think
it necessary to compare the explainability of MTUNet with
previous XAI methods using existing metrics. We adopt
MTUNet without the PE with ResNet-18 as the baseline
model and use existing XAI methods for explanations
(We consider our PE module as the explainable module.
After removing the PE, our model has a similar structure
to ProtoNet). We conduct 10000 episodes of 5-way 1-
shot tasks, obtain the visual explanations for each task
using several types of XAI methods, and compare these
explanations to the overall attention map A′ generated by
our method (MTUNet ResNet-18).

We adopt three evaluation metrics for comparison. (i)
Precision: We donate an input image as x and the foreground
bounding box by x̄ (provided by ImageNet [61]). Thus, we can
compute the area ratio of explanation within the bounding
box by the Precision = ∑

p∈x̄ A′(p)/
∑

p∈x A′(p), where

A′(p) is the attention value in A′ at pixel p and A′ is
resized to the same size as the input image. (ii) Insertion
area under the curve (IAUC) [62]: This metric calculates the
accuracy gain of the model when gradually adding image
pixels in the order of importance given by the explanation.
(iii) Deletion area under the curve (DAUC) [62]: This metric
measures the accuracy drop when gradually removing
important pixels from the input image. As shown in Table 4,
the explanation of MTUNet outperforms existing XAI
methods in all three evaluation metrics, which demonstrates
the strong explainability of the proposed method. We
think our intrinsic method has the advantage for the
interpretation of FSL tasks. Due to the FSL sampling
training strategy, both back-prop and perturbation methods
may lack the ability to analyze such complex scenarios.
While our method can provide an explanation within a
simple inference step.

4.5 Discussion

4.5.1 Pattern setting

The pattern number z and categories selected for PE pre-
training are important elements for training the whole
MTUNet. In this section, we will analyse them from these
two aspects.

The number z of patterns The number of patterns can be
another crucial factor for MTUNet. Intuitively, a larger z

makes the model more discriminative. To show the impact
of z, we uniformly sample classes in Cbase (i.e., defaulting
to sampling every I classes from the class list, where I =
10, 8, 7, 5, 4, 3, 2, and 1); thus, I=1 uses all classes in Cbase.

The test accuracies are shown in Fig. 6 for 5-way 1-shot
and 5-way 5-shot tasks on 10,000 sampled episodes over
Dtest of the three datasets. The horizontal axis represents
the number of patterns and the vertical axis represents the
average accuracy. We would say that the performance has

Table 4 Evaluation of
MTUNet and existing XAI
methods using explainability
metrics

mini-ImageNet

Methods Type Precision ↑ IAUC ↑ DAUC ↓

DeepLIFT [63] Back-Prop 0.728 0.680 0.131

GradCAM [35] Back-Prop 0.807 0.712 0.116

GradCAM++ [36] Back-Prop 0.826 0.735 0.107

Score-CAM [34] Back-Prop 0.811 0.702 0.110

SS-CAM [64] Back-Prop 0.791 0.720 0.114

RISE [62] Perturbation 0.757 0.753 0.098

IBA [37] Perturbation 0.871 0.764 0.096

MTUNet Intrinsic 0.902 0.793 0.091

The bold line is used to separate different settings for comparison
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Fig. 6 Results of pattern number
settings for the mini-ImageNet,
tiered-ImageNet, and CIFAR-FS
dataset. The horizontal axis
represents the number of
patterns and the vertical axis
represents the average accuracy.
We report the results with
10,000 sampled 5-way episodes
in the novel test set

no obvious changes on the CIFAR-FS dataset as the number
of z changes, whereas is has slightly decreased results on
the mini-ImageNet dataset (approximately 1% for 1-shot
and 2% for 5-shots). For the tiered-ImageNet dataset, when
setting the pattern number to 51, an obvious performance
drop is observed for the WRN backbone (approximately
3.5% for 1-shot), while this does not happen for the 5-shot
setting. In general, tuning z may help gain performance, but
its impact is not significant. It requires tuning the number
z of patterns for each backbone and dataset. Since a small
value of z can provide both high classification accuracy and
convince the visualization of each pattern (e.g. Fig. 4), we
recommend setting z to a small value according to the class
number of the dataset. However, it might be an interesting
research direction to estimate z, e.g., based on the number
of classes in a given FSL task.

Selection of classes for PE pre-training Our PE module is
supposed to learn common visual patterns. We use images
of a certain subset of classes in Cbase to learn the initialization
of such patterns in our experiments. The selection of this
subset thus affects the performance of downstream FSL
tasks. To clarify the impact of the choice of the subset,

we randomly sample 7 classes 50 times in Cbase of the
mini-ImageNet dataset, and 36 classes 20 times in the
tiered-ImageNet dataset, and use the corresponding images
for the training PE on top of ResNet-18. The trained PE is
used for training MTUNet, which is evaluated over 2,000
episodes of FSL tasks with both the validation and test sets.

Figure 7 left shows a scatter plot of the validation accu-
racies and corresponding test accuracies. The mean and the
95% confidence interval over the 50 test accuracies for the
mini-ImageNet dataset are 56.83% and 0.18%, respectively.
This implies that our model benefits from a better choice of
classes for PE pre-training. For this choice, we only have
access to the validation set; since the validation set and the
test set have disjointed classes, the best choice for the vali-
dation set is not necessarily the best choice for the test set.
While, the plot empirically shows that the validation and test
accuracies are highly correlated to each other, with a Pear-
son’s correlation coefficient of 0.71. We also implemented
the experiments on the tiered-ImageNet dataset with 20 ran-
dom samplings of 36 classes, which shows similar results.
The results above lead to the conclusion that MTUNet is
sensitive to the PE pre-training, however, we can use the
validation set to find the best choice.
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Fig. 7 Performance of random
classes sampling for PE
pre-training of patterns. All
experiments are implemented on
the mini-ImageNet and
tiered-ImageNet dataset using
ResNet-18 as the backbone

4.5.2 Selection of metric learningmethods

In our experiments, we find that a learnable metric by an
MLP achieves the best FSL classification performance over
commonly used predefined metrics, such as the Euclidean
distance and the cosine similarity. As shown in Table 5,
we can observe that the MLP performs the best for
all backbone settings on the mini-ImageNet dataset. The
accuracy difference is small for Conv-4 but noticeable for
ResNet-18 and WRN. We can infer that the MLP better
deals with features extracted from a larger backbone.

4.5.3 Limitations and future work

Our experiments have shown that training MTUNet from
scratch (i.e., without pre-training) was infeasible and that it
even required two pre-training steps. The number z of patterns
to be learned is a hyperparameter to be tuned for the given
dataset. Pre-training of PE is sensitive to selection of classes.
To address these drawbacks, we will study the relationship
between the numbers of classes and patterns. This also requires
to investigate the impact of different datasets in the training
process. We will keep working on improving the training stra-
tegy to make it more agnostic to class selection in pre-training.

The core of MTUNet’s explainability lies in observing
the combination of pattern-based visualization and match-
ing scores. However, evaluation of this aspect is not straight-
forward because the patterns are learned in the course of
training without supervision and thus there is no ground-truth.

Due to this, we relied on quantitative evaluation to demon-
strate the usability of MTUNet’s explainability. This prob-
lem may be mitigated by using or building a dataset with
fine-grained annotation on possible patterns.

An interesting future direction of MTUNet is to extend
it to different types of real-world data, other than images,
such as videos and 3D medical images. Research in this
direction has been already explored for some tasks, such
as shot boundary and key frame detection [65, 66] and
lesion localization [67, 68]. MTUNet’s extracted patterns
may offer better explanation for tasks in these domains.

5 Conclusion

In this paper, we proposed MTUNet designed for explainable
FSL classification tasks. Our model achieved higher classi-
fication performance than existing FSL methods on three
benchmark datasets. The PE module serves to only include
informative regions of image features extracted by CNNs
backbone. It can learn better representations and is proved to
be a necessary structure for improving prediction accuracy.

Our experiment results also quantitatively and qual-
itatively demonstrated MTUNet’s strong explainability
through patterns in images. Compared to the heatmap-alone
explanations provided by existing methods, our explanation
can be realized through the combination of pattern-based
visual explanation and pairwise matching scores which offer
a better proof basis for model decision analysis. With this

Table 5 Performance of different metric learning methods

Conv-4 ResNet-18 WRN

Methods One shot Five shots One shot Five shots One shot Five shots

Cosine Similarity 53.47±0.27 67.44±0.29 56.72±0.35 70.96±0.38 58.23±0.40 73.15±0.42

Euclidean Distance 53.25±0.22 67.12±0.28 56.01±0.32 71.54±0.36 57.85±0.35 74.79±0.38

MLP 54.01±0.37 69.43±0.46 58.13±0.44 75.02±0.43 60.12±0.45 79.23±0.42

All the experiments are implemented on the min-ImageNet dataset

The bold line is used to separate different settings for comparison



B. Wang et al.

combination, we can further manually analyse the reason
for failure cases, which is important to some high-risk areas
(e.g. medical tasks). In addition, the approach taken in our
model might be analogous to humans as we usually try to
find shared patterns when making a match between images
of an object that has never seen before. This can be advanta-
geous since the explanation given by MTUNet can provide
an intuitive interpretation (intrinsic) of what the model does.

Appendix A: Qualitative results of MTUNet

We provide visualization of patterns for 3 randomly
sampled 5-way 1-shot tasks with a single query image
per class in the mini-ImageNet dataset. The pattern-based
visualization (Figs. 8, 10, 12) and the pairwise matching
scores (Figs. 9, 11, 13, row and column are consistent with
the overall attention visualization for support and query of
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Fig. 8 Pattern-based visualization of sample 1
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Fig. 9 Pairwise matching of
sample 1

100 0 0 0 0

0 100 0 0 1

0 0 47 8 62

0 0 0 96 100

0 0 2 93 100

Reef Hound Truck Lock Carton

Support

Query

each category, with the scores shown as percentages) are
shown for samples 1–3, respectively. We also provide some
discussion on the respective samples.

Sample 1 By observing the matching matrix in Fig. 9,
we find there are two confusing categories of lock and
carton. They all obtain a high score for each other
category. The visualization in Fig. 8 shows that pattern 5 is
responsible for both the letters (or a face of a character) on
the carton and the discs of the lock. We would say that the
letters and the discs share some similar structures, which
causes the confusion.

Sample 2 As shown in Fig. 11, the pairwise matching
scores for this sample find proper matches except for
poncho. In Fig. 10, the poncho support image is a baby
girl wearing a poncho, while the query image is just a
poncho with black color on a white background. The query

image for poncho yields high scores for the support images
of poncho, skirt, and beetle. The highest score of
beetle may be due to the black colour. Interestingly, the
support and query images for skirt shows the attention
over the door behind the person but not over the skirt itself.
This is a good example of the importance of explanation for
FSL.

Sample 3 In Figs. 12 and 13, we find both the query and
support give attention to the body part of the goose, but
the differences in the perspective and the number of objects
may make matching difficult. As a result, the query goose
gets low scores for all support images. This also happens for
carton in this sample. On the contrary, for the prediction
of truck, it obtains a high score of 94. We can observe
pattern 5 catch the wheel part for both the support and query
images.
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Fig. 10 Pattern-based visualization of sample 2
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Fig. 11 Pairwise matching of
sample 2
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Fig. 13 Pairwise matching of
sample 3
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