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ABSTRACT
Deep hashing has beenwidely used to approximate nearest-neighbor
search for image retrieval tasks. Most of them are trained with
image-label pairs without any inter-label relationship, which may
not make full use of the real-world data. This paper presents deep
hashing, named HA2SH, that leverages multiple types of labels
with hierarchical structures that an ethnological museum assigns
to their artifacts. We experimentally prove that HA2SH can learn
to generate hashes that give a better retrieval performance. Our
code is available 1.

CCS CONCEPTS
• Computing methodologies → Visual content-based index-
ing and retrieval.
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1 INTRODUCTION
Museums have large image database to record their collections of
artifacts. For example, the British Museum made their database
with 1.9M images available online2. Each artifact (or equivalently
image) often comes with rich metadata, including codes encoding

1Code is available at https://github.com/wbw520/minpaku.
2https://www.britishmuseum.org/collection
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Figure 1: An example of artifact (or image) in our dataset. It
comes with OCM and OWC codes to roughly represent the
functionalities of the artifact and where it originates. 𝑘 is
the hierarchical level of the labels.

taxonomic classification as shown in Figure 1. Such an image data-
base can facilitate the experience in the museum by, e.g., providing
a handy and easy-to-use app to retrieve relevant artifacts (or im-
ages) by taking an image of the artifact in an exhibition, allowing
exploration of relevant artifacts on the artifact for visitors.

In order to implement such an app, a powerful and efficient
approach for image retrieval is necessary. Because of its high com-
putational and storage efficiency, hashing [6, 15, 18, 20] can be the
possible choice. Deep hashing [2, 4, 8, 12, 14, 23–29] adopts deep
convolutional neural networks (CNNs) [9, 10] as base network to
learn a nonlinear hash function. It allows large-scale retrieval of
images [3, 24] and videos [1, 7, 13, 19].

Previous works often use existing datasets, such as ImageNet and
COCO [5, 11, 21, 22], to train the image retrieval models; however
this may not be very coherent with actual image retrieval scenario
for, e.g., the museum uses. In real-world data, an artifact (or an
image) can have multiple taxonomic classifications to describe dif-
ferent aspects of the artifact. For example, the artifact in Figure 1
is originated from Japan, used as a toy, and made of paper, which
are encoded into multiple classification codes. Furthermore, such
codes can also encode taxonomic hierarchy, e.g., Japan is in Asia.
This inherently leads to the multi-task, multi-label, and hierarchical
nature of this image retrieval task.

This paper presents a new approach for hierarchy-aware hashing,
called HA2SH, which can handle real-world data derived from
an actual database provided by an ethnological museum. There
are two label spaces associated with each artifact, where one of
them can have multiple labels and both of them have hierarchical
structures. In order to generate hashes dedicated for the two label
spaces, HA2SH uses a shared CNN followed by two branches with
a respective hash layer to generate hashes. Multi-task learning

https://doi.org/10.1145/3460426.3463586
https://www.britishmuseum.org/collection
https://doi.org/10.1145/3460426.3463586


想𝑥1

𝑥1

𝑥3

𝑥2

Input

CNN

Similarities

Quantization

Loss

Similarity

Loss

Similarity

Loss

… 0.7

493 (Vehicles)

524 (Games)

NU (Mexico)

524 (Games)

AF (China)

323 (Ceramic)

523 (Hobbies)

AB (Japan)

想𝑥2

想𝑥3
𝑘 = 1

Labels of 𝑥1

Labels of 𝑥2

Labels of 𝑥3

想𝑥1 0.7 想𝑥2

想𝑥3

想𝑥1 0 想𝑥2

想𝑥3

想𝑥1 0 想𝑥2

想𝑥3

𝑘 = 2

𝑘 = 1 𝑘 = 2

…
…

ℎ𝑂𝐶𝑀

ℎ𝑂𝑊𝐶

Hash Layers

Figure 2: Overview of HA2SH with OCM and OWC branches to generate respective hashes. The cosine similarity is used to
define the hierarchical image-image similarities, which provide hard (solid lines) and soft (dotted lines) similarity losses.

with respective losses is adopted for better image representation,
whereas the losses take the multiple labels and their hierarchy
into account. Our three main contributions are as follows: 1) We
propose HA2SH, which is trained in a multi-task and multi-label
paradigm for hierarchy-aware hashing. 2) We design a flexible
retrieval system that allows controlling the importance of different
hashes to meet actual users’ needs. 3) We evaluate HA2SH with a
real-world dataset derived from an actual database provided by an
ethnological museum.

2 OUR DATASET
Under our collaborative project with an ethnological museum, we
were granted access to the database of its collection of artifacts,
which contains images and metadata of each artifact. We extracted
these images and associated metadata to build our dataset, con-
taining 450,443 images (127,337 artifacts) in total. The metadata
includes various information on the artifact, and we used as label
the outline of cultural materials (OCM) and the outline of world
cultures (OWC) defined by Human Relations Area Files3, where
OCM and OWC roughly describe the function and culture of the
artifact.

One important aspect of OCM and OWC is their hierarchical
structures. The semantics is encoded in a few-digit code, represent-
ing a certain category and its subcategory; for example, OCM’s
three-digit label 524 stands for “game”, where the first two digits
52 means recreation. OWC label AB06 stands for the culture of
“Ainu,” where the first digit and the first two digits mean “Asia” and
“area of Japan.” We used only the first two digits of the OWC label
to identify the region that the artifact is originated. The first and
second levels of OCM have 31 and 80 classes, where those of OWC
have 8 and 50 classes. Each image has at least one OCM and OWC
labels; many images have multiple OCM labels as an artifact can
serve multiple functions. An example data is shown in Figure 1.

3 HIERARCHY-AWARE HASHING
Given the dataset above, we design a deep hash that takes into
account the multi-task, multi-label, and hierarchical nature of our
dataset for image retrieval.
3https://ehrafworldcultures.yale.edu/ehrafe/

3.1 Problem Formulation
Let X = {𝑥𝑖 }𝑁𝑖=1 be the set of images in our dataset, from which
images similar to a query image are retrieved. HA2SH finds a map-
ping from an image to a 𝑄-bit binary code B = {𝑏𝑖 }𝑁𝑖=1, where
𝑏𝑖 ∈ {−1, 1}𝑄 . Code 𝑏𝑖 is trained to be locality-sensitive, and its
neighbors may be semantically similar to each other. Following
the previous work [4, 26, 27], instead of generating binary codes,
we adopt continues relaxation ℎ𝑖 ∈ [−1, 1]𝑄 , which can be easily
mapped to a binary code by taking the sign of each element of ℎ𝑖 ;
therefore, HA2SH learns mapping 𝑓 from 𝑥𝑖 to ℎ𝑖 .

The semantic similarity between a pair of images is defined based
on their labels. The labels for image 𝑥𝑖 ∈ X can be represented by
a multi-hot vector 𝑧 (𝑢,𝑘)

𝑖
, where 𝑢 ∈ {OCM,OWC} (for OWC, the

vector is often reduced to a one-hot vector) and 𝑘 is the level in
the label hierarchy (𝑘 is either 1 or 2 for both OCM and OWC). We
adopt the same strategy as IDHN [27] to define similarity 𝑠

(𝑢,𝑘)
𝑖 𝑗

between images 𝑥𝑖 and 𝑥 𝑗 with labels 𝑧 (𝑢,𝑘)
𝑖

and 𝑧
(𝑢,𝑘)
𝑗

using the
cosine similarity, i.e.,

𝑠
(𝑢,𝑘)
𝑖 𝑗

= 𝑧
(𝑢,𝑘)
𝑖

· 𝑧 (𝑢,𝑘)
𝑗

/(∥𝑧 (𝑢,𝑘)
𝑖

∥ ∥𝑧 (𝑢,𝑘)
𝑗

∥), (1)

where “·” is the operator for inner product. This definition quanti-
fies a fine-grained semantic similarity, taking the multi-label nature
of our dataset by allowing similarity in-between 0 and 1. The simi-
larities in the different levels are fused through the loss function
to generate hierarchy-aware multi-level deep hashes. For notation
simplicity, we omit 𝑢 and 𝑘 unless it is ambiguous.

Figure 2 shows the pipeline of our model. A CNN is used as the
backbone for feature extraction. HA2SH branches after the global
average pooling to generate different hashes for OCM and OWC.
Each branch has a hash layer, consisting of an fc layer and the
𝑡𝑎𝑛ℎ(·) nonlinearity, to generate hash ℎ (𝑢)

𝑖
.

3.2 Learning from Similarities
For a pair of hashes ℎ𝑖 and ℎ 𝑗 , we use the inner product ℎ𝑖 · ℎ 𝑗
to measure the distance between them, which is proved to be a
good alternative of the Hamming distance used for binary hashes to
quantify the pairwise similarity [3, 27, 29]. We train our mapping 𝑓
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for label category 𝑢 so that generated hashes ℎ𝑖 and ℎ 𝑗 well encode
our label-based similarity 𝑠𝑖 𝑗 for image pair (𝑥𝑖 , 𝑥 𝑗 ).

Hard similarity loss. Let S1 and S0 be the sets of image indices
pairs (𝑖, 𝑗) whose (multiple) labels are exactly the same (i.e., 𝑠𝑖 𝑗 = 1)
or completely different (i.e., 𝑠𝑖 𝑗 = 0), respectively. Pairs in these sets
give a strong signal that corresponding hashes ℎ𝑖 and ℎ 𝑗 are close
to or far from each other. To encode this, similar to HashNet [4],
we define the probability of the similarity given a pair of hashes as

𝑝 (𝑠𝑖 𝑗 | ℎ𝑖 , ℎ 𝑗 ) =
{
𝜎 (ℎ𝑖 · ℎ 𝑗 ) for (𝑖, 𝑗) ∈ S1
1 − 𝜎 (ℎ𝑖 · ℎ 𝑗 ) for (𝑖, 𝑗) ∈ S0

(2)

where 𝜎 (·) ∈ [0, 1] is the sigmoid function. Generally, the number
of image pairs with the same set of labels is far less than those of
completely different set of labels. We therefore introduce a weight
𝑤𝑖 𝑗 that gives 𝛾 for (𝑖, 𝑗) ∈ S1 and 1 − 𝛾 for (𝑖, 𝑗) ∈ S0 to mitigate
the imbalance and define the loss function as

ℓH = −
∑

(𝑖, 𝑗) ∈S1∪S0

𝑤𝑖 𝑗 log 𝑝 (𝑠𝑖 𝑗 | ℎ𝑖 , ℎ 𝑗 ). (3)

Soft similarity loss. For pairs (𝑖, 𝑗) that have partially matched
sets of labels, we use the loss defined in IDHN [27]. Let S′ denote
the set of indices pair (𝑖, 𝑗) such that 𝑠𝑖 𝑗 < 1. The soft similarity
loss is given by:

ℓS = −
∑

(𝑖, 𝑗) ∈S′

(
ℎ𝑖 · ℎ 𝑗 +𝑄

2 − 𝑠𝑖 𝑗𝑄

)2
. (4)

This loss enforces the correlation between ℎ𝑖 · ℎ 𝑗 and 𝑠𝑖 𝑗 to take
into account the multiple labels assigned to a single image.

Quantization loss. We use 𝑡𝑎𝑛ℎ(·) to squash the output of the
hash layer to be in [−1, 1], but this does not guarantee that the
resulting hash has values closer to either 1 or −1. We thus use the
quantization loss, given by

ℓQ =
∑
𝑖

∥|ℎ𝑖 | − 1𝑄 ∥2, (5)

where |ℎ𝑖 | gives the absolute value element-wise and 1𝑄 is a vector
with all its 𝑄 elements being 1.

Overall loss for hierarchical training (HT). Due to the hierarchical
structure of our labels, the hard and soft similarity loss can be
defined for respective levels of the hierarchies. Therefore, the loss
for branch 𝑢 is given by combining the losses as:

𝐿 (𝑢) =
∑
𝑘

ℓ
(𝑢,𝑘)
H + 𝛿

∑
𝑘

ℓ
(𝑢,𝑘)
S + 𝜆ℓQ (6)

where 𝛿 and 𝜆 are weights to control the soft similarity and quanti-
zation losses, respectively. The model is trained in the multi-task
learning framework, in which the following loss is used to train
mappings 𝑓 OCM and 𝑓 OWC:

𝐿 =
∑
𝑢

𝐿 (𝑢) = 𝐿OCM + 𝐿OWC . (7)

Table 1: Similarity learning experiments with 32-bits and 64-
bits of hash codes. Evaluated with mAP@1000.

Branch OCM OWC
OCM OWC Soft Loss 32-bit 64 bit 32 bit 64-bit

✓ 0.233 0.256 0.585 0.625
✓ ✓ 0.227 0.254 0.588 0.623

✓ 0.629 0.701 0.300 0.342
✓ ✓ 0.644 0.713 0.319 0.334
✓ ✓ 0.645 0.711 0.600 0.632
✓ ✓ ✓ 0.652 0.726 0.597 0.635

Table 2: Performance of Hierarchy-aware hashing in both
branches and hierarchical level 𝑘 .

OCM OWC
Label Setting 𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2
Only First-level 0.791 - 0.834 -
Only Second-level 0.754 0.726 0.769 0.634
All Levels 0.788 0.712 0.829 0.601

Only Second-level All Levels
415

412

411

291

292

532

534

Figure 3: The visualization ofUMAP for classes share similar
semantic meanings

3.3 Retrieval
Given query image 𝑞, we retrieve similar images in X, for which
we preliminary compute the setH (𝑢) = {ℎ (𝑢)

𝑖
}𝑁
𝑖=1 of hashes. The

pairwise distance between 𝑞 and 𝑥𝑖 can be given by

𝐷
(𝑢)
𝑖

(𝑞) = 𝑓 (𝑢) (𝑞) · ℎ (𝑢)
𝑖

. (8)

We combine the distances for OCM andOWCwithweight𝛼 ∈ [0, 1]
to provide flexible retrieval that can take both aspects of images
into account:

𝐷 = 𝛼𝐷OCM + (1 − 𝛼)𝐷OWC . (9)
Images in X are ranked according to 𝐷 .

4 EXPERIMENTS
We implemented HA2SH with PyTorch, using a CNN backbone
ResNet-50 [9] pre-trained on the ImageNet classification task [10].
The model was trained for 30 epochs with AdamW [16], which
started with a learning rate 10−4, decreased by a factor of 10 at the
20-th epoch. The learning rate of hash layers is set to be 5 times
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Figure 4: Demonstration of top 10 retrieval answers with dif-
ferent interest factors 𝛼 .

greater than the backbone network. Based on the data statistic, we
set 𝛾 and 𝛿 to 0.9 and 1. 𝜆 is set to 0.1. For learning the hierarchical
structures in the labels, we only used the first-level (𝑘 = 1) for the
first 10 epochs and then added the second-level’s loss.

For evaluation, 2% of the images are randomly picked out as
query images for evaluation and the rest are used as image database
X. We randomly sampled 50% of the image database for training.
We use the mean Average Precision (mAP) for evaluating our model.

4.1 Effects of Multi-task and Multi-label Losses
To evaluate the collective effect of two branches (OCM and OWC)
and multiple labels for 32-bit and 64-bit hashes, we used only
second-level (𝑘 = 2) labels with removing some losses (the losses for
OCM and OWC branches; and the soft similarity loss). As shown in
Table 1, the performance by multi-task losses with the soft similar-
ity loss was better than those of individual tasks’. Interestingly, the
model trained only for OCM labels can still give relevant images for
OWC, and vice versa. This implies the correlation between OCM
and OWC labels. The soft similarity loss worked well for the OCM
labels, while in the OWC space, there are not many multi-label
cases and this loss serves slightly.

4.2 Effects of Hierarchy Awareness
The hard/soft similarity losses encourage images with the same
label to form a cluster in the hash space. Our hierarchy-aware
hashing is for learning a better hash space, which forces the model
to put images with semantically similar (i.e., the first level 𝑘 = 1)
classes closer to each other. This gives an extra value for image
retrieval. We used UMAP [17] to visualize the 64-bit hashes trained
with OCM in a 2-D space.We sampled some images (not multi-label)
with the chosen classes that share the first-level labels. For example,
labels 532 (Representative art) and 534 (Musical instruments) belong
to the first-level class 53 (Art).

Figure 3 shows the visualizations.When themodel is only trained
with second-level (𝑘 = 2) labels (left), the first-level labels appear
to be randomly placed. With this hash space, retrieved images can
return semantically irrelevant images. With hierarchical training,
the first-level labels bring images with similar semantic meanings
closer, and then training with the second-level labels refines the

Table 3: The performance for different 𝛼 values, evaluated
with respect to OCM, OWC, and their union, in mAP@1000.

𝛼 0 0.25 0.5 0.75 1
OCM 0.313 0.681 0.690 0.698 0.712
OWC 0.601 0.598 0.591 0.584 0.392
Union 0.216 0.559 0.544 0.551 0.342

clusters. The distribution of images in the hash space roughly takes
this hierarchical structure into account as shown in Figure 3 (right).

Table 2 shows the performances of two models: one only trained
with second-level labels (𝑘 = 2) and the other with all levels labels.
Both models have two branches and use the soft similarity loss.
They are evaluated with OCM and OWC labels at both first (𝑘 = 1)
and second (𝑘 = 2) levels. The results show that for both OCM and
OWC, the performances improved for the first level with all levels
training at the cost of the second-level performance.

4.3 Evaluation of Retrieval Performance
𝛼 controls the users’ preference on OCM and OWC. We evaluated
our model with different values of 𝛼 . Table 3 summarizes the per-
formances for different 𝛼 , evaluated with respect to OCM, OWC,
and their union (an image is counted as correct if both OCM and
OWC labels are the same as a query), where the model is trained
with the two branches, the soft similarity loss, and all levels labels.
The results demonstrate that, as expected, 𝛼 = 0 gives a higher
OWC performance, while 𝛼 = 1 gives a higher OCM performance.

Figure 4 gives examples of retrieval results for different 𝛼 . The
query has OCM label 323 (Ceramic technology) and 534 (Musical
instruments), as well as OWC label AB (Japan). Images marked with
black boxes are with the exact same labels (of both OCM and OWC)
as the query. The orange and blue boxes represent partial matches
and complete mismatches, respectively. For 𝛼 = 1, all retrieved
images are with OWC label AB. OCM labels are almost correct,
which may imply a high correlation between OWC and OCM labels.
Meanwhile, for 𝛼 = 0, which fully focuses on OWC, HA2SH gave
relatively diverse images. When 𝛼 = 0.5, all retrieved images are
with the same labels as the query.

5 CONCLUSION
In this paper, we proposed HA2SH for image retrieval, targeted
at the ethnological museum database. Our results demonstrated
that HA2SH can leverage multiple labels and their hierarchical
structures to learn a better hash. It fuses hash codes learned from
different types of labels to offer a flexible retrieval system. We be-
lieve HA2SH provides a good user experience in museum apps. Our
future work includes a subjective evaluation to show the usability
of the retrieval system in some application scenarios.
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