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Abstract Semantic video segmentation is a key chal-

lenge for various applications. This paper presents a

new model named Noisy-LSTM, which is trainable in an

end-to-end manner, with convolutional LSTMs (Con-

vLSTMs) to leverage the temporal coherency in video

frames. We also present a simple yet effective training

strategy, which replaces a frame in video sequence with

noises. This strategy spoils the temporal coherency in

video frames during training and thus makes the tem-

poral links in ConvLSTMs unreliable, which may conse-

quently improve feature extraction from video frames,

as well as serve as a regularizer to avoid overfitting,

without requiring extra data annotation or computa-

tional costs. Experimental results demonstrate that the

proposed model can achieve state-of-the-art performances

in both the CityScapes and EndoVis2018 datasets. Code

is available at https://github.com/wbw520/NoisyLSTM.
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1 Introduction

The ever-increasing importance of video semantic seg-

mentation has attracted a fast-growing attention from

an extensive number of computer vision researchers.

Due to the rapid development of convolutional neural

networks (CNNs) [34,27], it is fair to say that the per-

formance of video semantic segmentation has been dra-

matically improved. A simple yet effective approach is

to treat video frames as independent images and use im-

age segmentation models for each frame. This approach

can benefit from many well-developed image segmenta-

tion models [3,7,36] and the large number of available

training datasets [6,19].

However, these methods usually suffer from some

segmentation errors like inaccurate object boundaries,

incomplete regions that only cover parts of certain ob-

jects, and over-complete regions that cover neighbor-

ing objects. Due to the deteriorated imaging and color

quality caused by video capturing and encoding, these

segmentation errors happen much more frequently in

video semantic segmentation tasks. An important ob-

servation is that these errors only exist in some frames,

while other frames, including adjacent ones, may still

get accurate predictions.

Based on this observation, researchers have devel-

oped new models dedicated for video semantic segmen-

tation that utilize the temporal coherency. There are

some works that use optical flow [8,22,15], whereas the

computation of optical flow itself is a non-trivial prob-

lem that depends much on the motion dynamics in ad-

jacent frames. It is hard to design a robust and accu-

rate method for estimating optical flow for a variety of

videos.

Another possible way to leverage the temporal co-

herency is to introduce temporal structure in models.

One pioneering approach is to use conditional random
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Fig. 1 Overview of the proposed Noisy-LSTM model for video semantic segmentation.

fields (CRFs) on top of a model for a single image with

corresponding variables connected in the temporal di-

mension [33,17]. However, their CRFs have no access

to internal representations in the CNNs, which may

spoil their potential to improve the segmentation re-

sults. Recurrent neural networks (RNNs) provide fur-

ther flexibility, and there have been a series of works

[29,5,26,25]. They used recurrent networks to extract

relationship information of adjacent frames for current

frames prediction. However, additional links in the tem-

poral dimension introduce more model parameters to

be trained and may require more training data. Espe-

cially, most RNN-based models need a large number of

labeled data for training, which may not always avail-

able for many applications.

Data augment is a possible way to fix these kinds

of problems. Recent techniques for training neural net-

works sometimes use noises. For example, dropout and

its related techniques [18] inject noises into latent rep-

resentations to regularize training. Some methods add

noises even to input images as data augmentation [21].

Xie et al.[31] proposed to use unlabeled data, which

served as noise for training, in a teacher-student frame-

work. The experimental results in these works demon-

strate that using noises in training is an easy yet effec-

tive way to improve the performance.

In this paper, we propose a new method named

Noisy-LSTM, which uses convolutional LSTM (Con-

vLSTM [32]) to facilitate the temporal continuity to

improve video semantic segmentation tasks. Inspired

by [31], we adopts a new noisy-training strategy to

further improve its ability to utilize the temporal co-

herency. As shown in Fig. 1, the Noisy-LSTM model is

based on a feature extractor and extended with ConvL-

STM to leverage temporal coherency. Noisy-LSTM can

be applied to all common semantic segmentation mod-

els. Noisy-LSTM uses multiple sequences as input, into

which random tensors are added. All frames in these

sequences are compiled into a single batch and are fed

into a shared CNN, in which batch normalization stabi-

lizes the training process. Resulting feature maps are re-

arranged into the original sequences, and each of them

goes through CovnLSTM module to make use of their

temporal dynamics for prediction. Ultimately, the de-

coder generates semantic segmentation results.

Our main contribution is three-fold:

– We develop a video segmentation method that makes

use of the temporal coherence in video frames with

ConvLSTM.

– We also enhance the model’s temporal awareness by

using a noisy-training strategy. Without any extra

data annotation or computation costs, our strategy

regularizes the training. This strategy can be also

viewed as a way to control reliability of temporal

connections. We can apply this strategy to other

models for improving their semantic segmentation

performance.

– We experimentally demonstrate that our model trained

with the noisy-training strategy outperformed or is

comparable to the state-of-the-art models over the

Cityscapes and EndoVis2018 datasets.

2 Related work

In this section, we will here briefly review the represen-

tative literature.

Time Sequence Semantic Segmentation Most approaches

are designed only for image segmentation and not for
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video task. It means the temporal coherency of the

video is not considered and each frame of a video se-

quence is predicted independently. A common approach

to deal with the temporal coherency is to use RNN-

based structures like Long Short Term Memory (LSTM)

networks [14]. On top of fully convolutional networks

(FCNs) [20], Valipour et al.introduced the recurrent

fully convolutional network (RFCN) [29]. They added

a recurrent unit between the encoder and the decoder

in a FCN, and achieved a better performance on the

SegTrack, Davis, and Moving MNIST datasets. Yur-

dakul et al.[5] evaluated different kinds of RNN-based

structures, such as ConvRNN, ConvGRU, and ConvL-

STM, on the virtual KITTI dataset [9], and conculuded

that ConvLSTM had the best performance. Nilsson and

Sminchisescu [22] used optical flow to represent changes

between adjacent frames and applied the ConvGRU

structure to encode temporal continuity. In addition,

they used unlabeled frames to further improve the pre-

diction performance. Rochan et al.[26] adopted bidi-

rectional ConvLSTM for future frame prediction. They

added the ConvLSTM structure between each layer in

the encoder and decoder, merging the temporaly adja-

cent feature maps to predict the target frame. Pfeuf-

fer et al.[25] applied ConvLSTM at different positions

of some state-of-the-art models and demonstrated that

ConvLSTM worked well with most positions.

Training with Noises For the training of deep models,

insufficient training data is a crucial issue that causes

overfitting. In order to avoid this issue, various ways to

use noises during training have been proposed. Dropout

[13] is one of them, adding noises to latent represen-

tations in neural networks. There are some variants

of dropout [18]. Data augmentation by adding noises

is also considered [21], where the equivalence between

data augmentation by noises and dropout is pointed

out [23]. Recently, using unlabeled data to improve the

model performance is proved possible. Xie et al.[31]

proposed a self-training method named Noisy Student

to improve the classification performance on the Ima-

geNet dataset. 300M unlabeled images, many of which

were from different domains, were used to enhance the

feature extraction ability of the student model. They

applied the teacher-student approach in semantic seg-

mentation tasks for images and presented a new model

compression method that can result in models with a

good performance while having a much smaller param-

eter size.

In this paper, we also use unlabeled data to im-

prove the segmentation performance, one of the biggest

differences is that our strategy does not require a dual-

network structure like teacher-student, as well as the

temporarily-generated labels, or the iterated-training

process, which cost more time and resources. We borrow

the insight that adding noises in training enhances the

feature extraction capability of a model, and propose to

add noises in temporal sequences. With this strategy,

we expect that the model is robust to occasional and

rare changes in frames, which cannot be handled only

by a ConvLSTM-based network.

3 Methodology

3.1 Our Model

As shown in Fig. 1, the proposed model mainly consists

of three components: feature extraction module, Con-

vLSTM module, and decoder module. It takes multiple

sequences in a batch S = {Sn|n = 1, . . . , N} as in-

put, where N is the batch size, and produces a single

segmentation result for each sequence as output. Input

sequence Sn = {snt |t = 1, . . . , T} contains T frames,

where the last frame snT is the target frame for which

our model produces segmentation result yn, and other

frames snt for t 6= T contextualize snT . T is fixed in our

implementation, and thus all input sequences have the

same length T . Note that snt and snt+1 are not necessar-

ily consecutive in the original video sequence, but they

can be frames separated by a fixed number of frames.

For PSPNet based model, our feature extraction

module adopt ResNet-101 [12] as the backbone net-

work. We replace the last two convolution layers of

ResNet-101 with dilated convolutions [34] of size 3× 3,

rate of 2 and 4 to enlarge the receptive field and remove

the fully-connected layers in original ResNet-101. Batch
normalization (BN) is of great value for training deep

models [25], but it requires diversity in an input batch;

otherwise, it may cause severe performance degrada-

tion [28]. This is a serious problem for models that deal

with temporal sequences, because they only input the

frames from same video sequences, which may not of-

fer enough diversity. This can be the main reason why

most LSTM-based video segmentation models [22,25]

do not have BN layers. To address this, in the training

stage, we sample target frames snT randomly from all

frames in the training set and then aggregate context

frames for each target frame to form sequence Sn. Also,

the feature extraction module does not aware of the se-

quence structure, i.e., it flattens all sequences into a

set of T × N frames, so that we can easily apply BN.

We denote feature map obtained from snt , which is the

output of the second dilated convolution layer, by znt .

The ConvLSTM module to encode the temporal se-

quence into a single feature map, which will be detailed

in the next section. The previous work [25] proved that
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Fig. 2 ICNet-based Noisy-LSTM. We add ConvLSTM module directly after the feature extractor of each branch and the
output features are aggregated by the CFF module.
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Fig. 3 PSPNet-based Noisy-LSTM. We add ConvLSTM after the CNN feature extractor and the output features will go
through the PPM for final prediction.

ConvLSTM can be used for various stages (i.e., layers)

in various model architectures. We put the ConvLSTM

between the feature extraction and decoder modules.

The output of ConvLSTM module can be represented

by

gn = ConvLSTM (Zn) , (1)

where Zn = {znt |t = 1, . . . , T}.
Finally, the decoder module takes the outputs gn

from the ConvLSTM module and produces semantic

segmentation result yn for target frame snT of input se-

quence Sn.

In this paper, we apply Noisy-LSTM to ICNet [35]

and PSPNet [36] and the model structures are respec-

tively shown in Fig. 2 and Fig. 3. For ICNet-based

Noisy-LSTM, we directly add ConvLSTM module at

the end of each branch and the output features are ag-

gregated by the cascade feature fusion (CFF) module.

In PSPNet-based Noisy-LSTM, the ConvLSTM mod-

ule is placed between the underlying CNN model and

the decoder module which consists of a pyramid pool-

ing module (PPM), two convolutional layers, and an

upsampling layer.

In what follows, we detail our network design to

encode the temporal dependency through ConvLSTM

and enhancement of temporal awareness by the noisy-

training strategy.

3.2 Encoding Temporal Dependency

It is proved that ConvLSTM is a powerful tool for cap-

turing the spatio-temporal dependency, which is impor-

tant for semantic segmentation in video [25]. The LSTM

cells can learn how to handle information from prece-

dent frames during training and is able to memorize in-

formation over a certain period. In contrast to LSTMs
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Add noises

Noise data

Original sequence Sequence with noises

Fig. 4 A noisy-training strategy introduces noises in the time domain during the training process, by replacing some frames
in the sequence with random images.

for fully-connected layers [11], ConvLSTMs use as la-

tent state a convolutional layer, which is more suitable

for vision tasks. We use a single layer ConvLSTM and

set the kernel size to 3× 3. The segmentation result for

the target frame (t = T ) is given based on its own and

the precedent (t = 1, . . . , T − 1) frames’ feature maps.

As shown in Fig. 1, the feature map from each in-

put frame is sequentially fed into the ConvLSTM layer

to get the feature map based on which the segmenta-

tion result for the target frame are computed. Formally,

from feature map zt for the t-th frame in input sequence

S (we omit the superscript n for notation simplicity), g

is computed as the last latent state of the ConvLSTM

layer as follows:

it =σ(Wi ∗ zt + Vi ∗ ht−1 + Ui ⊗ ct−1 + bi)

ft =σ(Wf ∗ zt + Vf ∗ ht−1 + Uf ⊗ ct−1 + bf)

ct =ft ⊗ ct−1 + it ⊗ tanh(Wc ∗ zt + Vc ∗ ht−1 + bc)

ot =σ(Wo ∗ zt + Vo ∗ ht−1 + Uo ⊗ ct + bo)

ht =ot ⊗ tanh(ct),

(2)

where ∗ and ⊗ are the convolution operations and the

element-wise product, respectively; σ and tanh are the

sigmoid and hyperbolic tangent non-linearities. it, ft,

and ot are the input, forget, and output gates, respec-

tively; ct and ht are the cell and the latent state, where

g = hT . Wl and Vl for l ∈ {i, f, c, o} are trainable convo-

lution kernels; Ul and bl are trainable parameters of the

same size as zt. Multiple ConvLSTM can be stacked and

temporally concatenated to form more complex struc-

tures and may further improve performance. In our net-

work, we only use a single layer ConvLSTM.

3.3 Enhancing Temporal Awareness

For video tasks, the temporal coherency between frames

is often leveraged for better performance. However, there

might be some cases in which this affects negatively.

For example, in surgery videos, consecutive frames may

usually have small motions and occasionally exhibit

large motions. Such rare events may not be well learned

with, e.g., RNN-based models.

For neural network training, a number of attempts

have been made to utilize noises in various ways for the

sake of regularization [23,2]. More recently, some stud-

ies demonstrated that huge amount of unlabeled data,

which may serve as noises in training, can improve the

performance of semantic segmentation and classifica-

tion tasks in teacher-student networks [30,31]. Inspired

by these works, we propose a noisy-training strategy,

which replaces some frames in input sequences with un-

labeled and random images during training. This noise

injection in the time domain stochastically spoils tem-

poral dependency in the original sequence and may con-

sequently improves the capability of feature extraction

from individual frames as the temporal continuity is no
longer reliable, and thus we can expect better temporal

awareness in the model.

Specifically, for each sequence, we replace some of

context frames with random frames, which are unla-

beled random images with much different contents, as

shown in Fig. 4. For example, we may use handwriting

images, frames in TV drama series, or medical images

as noise to replace frames when dealing with street-

view sequences. Even random tensor can be used as

one type of noise. The target frame are not replaced, so

that we can still use its ground-truth label. In addition,

due to the structural characteristics of our model, the

feature maps from context frames are used solely for

enhancing the target frame’s feature map, and the out-

put from the model is the segmentation result for the

target frame. This means that there is no need to gen-

erate, e.g., pseudo labels for noises, which are required

in [30,31]. Therefore, the noisy-training strategy causes

no extra computation nor annotation.
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Models
Cityscapes EndoVis2018

Validation Test Validation

FCN-8s [20] 64.3 - 47.9
DeepLab-v3 [3] 71.8 - 56.2
DANet [7] 68.7 - 56.0
PSPNet (baseline) [36] 71.6 71.0 59.8
ICNet (baseline) [35] 60.0 59.5 52.1

DynamicCRF [10] 64.5 - -
ConvLSTM [25] 62.3 - -
GRFP [22] 73.6 72.8 -
Noisy-LSTM (ICNet) (w.o. noisy-training) 61.2 60.5 53.6
Noisy-LSTM (ICNet) 62.5 61.6 54.8
Noisy-LSTM (PSPNet) (w.o. noisy-training) 72.2 71.7 61.1
Noisy-LSTM (PSPNet) 73.0 72.8 62.3

Table 1 Comparison results with the state-of-the-art methods on Cityscapes and EndoVis datasets. All predictions are
evaluated with mIoU(%). Best performance in bold.

For adding noise, each context frame (i.e., s1, . . . , sT−1)

is replaced with a random image with the probability of

p, which is set to 50% in our implementation. We also

limit the number of frames to be replaced to half of se-

quence length (i.e., T/2). It means replaced frames is

no more than two in our experiment. In addition, we in-

troduce another kind of temporal noises, i.e., randomly

reversing the previous frames in input sequences. This

operation also helps interupt temporal data.

4 Experiments

In order to evaluate our model trained with the noisy-

training strategy, we used two video semantic segmen-
tation datasets in completely different domains, i.e.,

Cityscapes [4] and EndoVis2018 [1]. Frames in one dataset

were used as noises when training our model for the

other dataset, whereas labels in the dataset used as

noises were not used in this process. For data augmen-

tation to all experiments, we adopted operations includ-

ing rotate (angle between -10 and 10), random horizon-

tal flipping, and so on. When training with temporal

data, all the input images in one sequence will calcu-

lated by the same data augmentation.

We used cross-entropy as the loss function and Adam

[16] as the optimizer with an initial learning rate of

10−4, which was decreased with the factor of 10 after

half way of the training. The iteration was terminated

after 40 epochs for Cityscapes and 30 epoches for En-

doVis2018. The length T of sequence was set to 4, and

the number N of sequences was also set to 4. The hid-

den state h0 and cell c0 were zero initialized. The model

was implemented in Pytorch[24] framework and we ran

the model on the Tesla V100 GPU with 32GB memory.

4.1 Cityscapes Dataset

The Cityscapes dataset contains in total 5,000 video se-

quences of high-resolution frames (2, 048×1, 024), parti-

tioned into training, validation, and test sets with 2,975,

500, and 1,525 sequences, respectively. The videos are

captured in different weather conditions across 50 dif-

ferent cities in Germany and Switzerland. There are 30

categories in total in the Cityscapes dataset, however,

follow the previous research, only 19 of them are used

in the semantic segmentation task.

We try with different lengths of the frame interval

and find that we can achieve the best performance with

an interval of 0.12s (more details in Sec. 4.3), which is

adopted for all methods. Because of the GPU memory

issues caused by high-resolution images in Cityscapes

and a larger visual field, we resize the original image

into 1024 × 512 for PSPNet-based model and apply a

sliding window with a size of 448 × 448 on the resized

images. For ICNet-based model, we maintain the orig-

inal resolution and adopt sliding window with a size of

512 × 1024. We firstly train the network without Con-

vLSTM module for 40 epochs. After that, the whole

network is trained for another 40 epochs. The results

of the best performing model on the validation set are

submited to the Cityscapes test server.

The results are summarized in Table 1. For com-

parison, we evaluated FCN-8s [20], DeepLab-v3 [3], and

DANet [7], all of which were re-implemented and trained

in the same configuration. We also recorded the re-

sults reported by previous research. It turned out that,

compared to the baseline model, PSPNet-based (ICNet-

based) Noisy-LSTM achieved better performance, with

improvements of 1.4% (2.5%) in the validation set and

1.8% (2.1%) in the test set. In addition, the noisy-

training strategy also improves the performance in both
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Input Frame

Ground-truth

PSPNet

Noisy-LSTM

(w.o. noisy-training)

Noisy-LSTM

DeepLab-v3

Fig. 5 Visualization of the segmentation results of the Cityscapes dataset using PSPNet based model. Observe how ConvLSTM
plus noise strategy is able to correct wrong segmentation by favorable obtaining previous frames information. Notable differences
are marked with orange boxes.

validation and test sets. We also show some qualita-

tive results from the validation set in Fig. 5, Every col-

umn lists the input image with its ground true label

and model prediction. All the notable changes are high-

lighted in orange boxes. It shows that Noisy-LSTM can

generate accurate predictions on some challenging ob-

jects. For example, the human body in the first column

(marked in red), the wall in the second column, and the

bus in the third column. Actually, all these objects exist

in the previous frames. We can see that Noisy-LSTM

can obtain information from these frames and fix wrong

segmentation. In this case, the noisy-training strategy

can help the network to obtain these kinds of temporal

information more efficiently.

4.2 EndoVis2018 Dataset

We also evaluated and compared Noisy-LSTM on the

EndoVis2018 dataset [1]. EndoVis2018 dataset includes

19 sequences, which is split into 15 and 4 sequences

for training and testing. We picked up two sequences

(sequences #5 and #10) from the training set and used

them as the validation set. We resized the image into

520×416 for PSPNet-based model (ICNet-based model

use original resolution as input) during training and

recovered it into original resolution for evaluation. Each

pixel in the frames are annotated with one of 11 class

labels, including organ tissues and surgical instruments.

Table 1 shows that Noisy-LSTM model can also out-

perform other methods on this dataset. Some exam-

ples are present in Fig. 6. Similarly to the Cityscapes

dataset, our Noisy-LSTM gives accurate segmentation

even of small regions.
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Input Frame Ground-truth PSPNet
Noisy-LSTM

(w.o. noisy-training)
Noisy-LSTM

Fig. 6 Visualization results from the EndoVis2018 dataset using PSPNet based model. The Noisy-LSTM model can get more
accurate segmentation result on the body tissues in the first row, and the surgical instruments in the second row.

4.3 Effects of Hyperparameter

There are some important parameters related to the

network performance. This section gives some extra

experimental results to show the effect of the frame

interval and the number of input sequences over the

Cityscapes dataset’s validation set.

Frame interval For Cityscapes, each video sequence has

30 frames at 16.7 fps, and the 20-th frame was an-

notated. Noisy-LSTM model contextualizes the target

frame with T−1 precedence frames, and context frames

can be chosen arbitrarily. In our implementation, we re-

sample the context frames from the video sequence, i.e.,

there are a constant number of frames in-between st and

st+1. We evaluated the cases when context frames are

sampled every 1, 2, and 5 frames, which corresponds

to frame intervals of 0.12s, 0.18s, and 0.36s, respec-

tively. Table 2 shows the results of the proposed model

with or without noisy-training using different frame in-

tervals. The best result is obtained with a interval of

0.12s and with noisy-training strategy. It shows that

longer interval leads to the decrease of the segmenta-

tion performance. Also, in all temporal intervals, noisy-

training methods can always show the correction capa-

bility. This fact proves that the noisy-training strategy

will enhance the temporal awareness of the deep learn-

ing models and give them a better ability to extract

useful information among previous frames.

Type and probability of noises Noisy-training is the key

to this research. Thus, we evaluate the effects of differ-

ent types and intensity of the added noises with PSPNet-

based model. We add three different types of noises in-

cluding unrelated data, random tensor, and extreme

Frame Interval(s)
mIoU(%)

w.o. Noisy-training w. Noisy-training

0.06 72.0 72.7
0.12 72.2 73.0
0.18 71.6 72.6
0.36 71.2 71.9

Table 2 Results with different intervals between input
frames. All experiments use PSPNet as base network and
evaluated in cityscapes validation set. Best result is obtained
by skip distance 2 using noise strategy.

augmentation (distortion or Gaussian blur). For the

noise intensity which means the probability of noise ap-

pears in previous frames, we use 25%, 50%, 75%, and

100%. The result shows that both unrelated data and

random initialization can improve the prediction, while

extreme augmentation can not perform as an ideal type

of noise. For noises of unrelated data, probability does

not obviously affect the performance and the best result

is obtained with the probability of 50%. For the noise

type of random tensor, the increase of noise probability

will deteriorate the model’s performance.

Number of input sequences in a batch This parameter

is critical for BN and thus can affect the performance.

We evaluate the effect of the sequence numbers in both

PSPNet-based and ICNet-based Noisy-LSTM models.

We train models with different sequence numbers on

single or multiply GPUs and the results are shown in

Table. 4. We can see that, in PSPNet-based Noisy-

LSTM, a larger batch size lead to better prediction

performance. When the batch is set to 1, it will cause a

great performance drop. For ICNet-based Noisy-LSTM,

improving the batch size can slightly improve the per-



Noisy-LSTM: Improving Temporal Awareness for Video Semantic Segmentation 9

Probability
Noise Type

Unrelated Data Random Distortion Gaussian Blur

0% 72.2 72.2 72.2 72.2
25% 72.4 72.5 71.6 71.4
50% 73.0 72.9 71.2 71.7
75% 72.8 72.4 71.0 71.5
100% 72.5 71.0 71.2 71.3

Table 3 Results with different noise type and probability. All experiments use PSPNet as base network and evaluated in
cityscapes validation set. Best result is obtained by noise type with unrelated data and probability 50%.

# GPUs 1 2

# sequences 1 2 3 4 4 8

ICNet-based 61.3 61.9 61.7 62.5 61.8 62.0
PSPNet-based 68.4 71.9 72.4 73.0 72.6 73.3

Table 4 Results with different numbers of sequence batches in Cityscapes validation set.

Model
Noise Type

Distortion Gaussian Blur No noise

ICNet-based (w.o. noisy-training) 57.5 58.8 61.2
ICNet-based 61.7 62.0 62.5
PSPNet-based (w.o. noisy-training) 70.8 71.1 72.2
PSPNet-based 72.6 72.4 73.0

Table 5 Results of anti-noise experiment.

formance. The experimental results prove the necessity

of bn for training.

Anti-noise experiment For video tasks, when the im-

age quality of the previous frame is not good due to

external factors (blurring, etc.), much noisy informa-

tion is included in the temporal features. In this case,

the prediction of the target frame will be affected and

the performance may decrease. Our Noisy-LSTM can

overcome this problem and generate accurate segmen-

tation masks in some extreme situations. In Table. 5, we

show the results of the anti-noise experiment for both

ICNet-based and PSPNet-based model in the validation

set of the Cityscapes dataset. We applied two kinds of

noises (Gaussian blur and distortion) and added them

to the first and third frames in the input sequence for

evaluation. The noisy images are shown in Fig. 7. We

found that normally-trained models will be influenced

by the noisy input, while the noisy-training strategy

can weaken this performance degradation. We also pro-

vide some comparison samples in Fig. 7 (obvious dif-

ferences are marked with magnifying glasses). All these

results are generated by the PSPNet-based model. The

target frame is the last frame of the continuous four

frames in the input sequence and the noise frame is

the third frame added with noises. In the first column,

we applied distortion to the noise frame; in the second

column, we adopted Gaussian blurring; in the third col-

umn, we applied both distortion and Gaussian blurring.

Compared to the normal input results, noisy input will

cause the wrong predictions. For example, in the first

column, the predictions of the wall (slate blue) should

be the building (grey). Also, the end of the sidewalk

(fuchsia) also covered the wrong areas. We think this

phenomenon is due to the distortion of objects on the

previous frame, which conveys these incorrect tempo-

ral information to the prediction for the target frame.

On the contrary, the results of noisy-trained models are

only slightly affected. Similarly, in the second column,

Gaussian blurring will blur the outline of small objects

and even blend them into the surrounding environment.

With noisy input, normally-trained models will give in-

complete predictions of signboard (yellow), while noisy-

trained models have a much better performance.

5 Conclusion

In this paper, we proposed a model named Noisy-LSTM

for semantic video segmentation, which is trainable in

an end-to-end manner. Noisy-LSTM is capable of utiliz-

ing the temporal dependency in video sequences to im-

prove the segmentation performance. It employs a sin-

gle layer convolutional LSTM to encode spatio-temporal
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Normal Training 

& Normal Input

Normal Training 

& Noisy Input

Noisy Training 

& Normal Input

Ground-truth

Noisy Training 

& Noisy Input

Noise Frame

Target Frame

Distortion Gaussian Blur Distortion & Gaussian Blur

Fig. 7 Visualization results of anti-noise experiment.

features. In addition, we propose the noisy-training strat-

egy, which introduces noises during training so as to

avoid excessive reliance on precedence frames and thus

is expected to improve feature extraction. Our experi-

mental results demonstrated that this strategy further

improved the performance without extra data annota-

tion or computational costs, achieving the state-of-the-

art performances on the Cityscapes and EndoVis2018

datasets.
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