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Although deep learning models have been successfully adopted in many applications, they are facing
challenges to be deployed on energy-limited devices (e.g., some mobile devices, etc.) due to their high
computation complexity. In this paper, we focus on reducing the costs of Gated Recurrent Units
(GRUs) for time-series prediction tasks and we propose a new pruning method that can recognize and
remove the neural connections that have little influence on the network loss, using a controllable thresh-
old on the absolute value of the pre-trained GRU weights. This is different from existing approaches
which usually try to find and preserve the connections with large weight values. We further propose a
sparse-connection GRU model (SCGRU) that only needs a one-time pruning (with fine-tuning), rather
than using multiple prune-retrain cycles. A large number of experimental results demonstrate that the
proposed method is able to largely reduce the storage and computation costs while achieving the
state-of-arts performance in two datasets. Code is available ( https://github.com/imLingo/SCGRU).
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Deep learning has boosted a lot of artificial intelligence applica-
tions. However, deep learning models still follow a trend of ‘‘the
bigger, the better”, which may become the obstacle for their
deployments in practical applications, especially on the end nodes
that are with limited computation capability. A typical example is
an early-warning system of smart grid, where an accurate data pre-
diction on edge terminals is preferred, which, however, is very dif-
ficult due to the high computational complexity of big time-series
models [1]. Excessive feature representation and parameterization
in the neural network model will bring a heavy computation and
storage burden to the end platform [2]. In addition, although over
parameterization is beneficial for network performance optimiza-
tion, it may be not necessary for accurate prediction [3]. Therefore,
it is important to find ways to decrease the costs of time-series
models while keeping the model performance, to enable them for
the devices with limited resources.
Compared with traditional time-series prediction methods
[4,5], Recurrent Neural Networks (RNNs) [6], such as Long Short-
Term Memory networks (LSTMs) [7] and Gated Recurrent Units
(GRUs) [8], can better formulate the non-linear relationship and
long-range dependencies among the time-series data. In addition,
GRU has a simpler structure and a comparable performance to
LSTM, therefore, GRU is more suitable for resource-limited devices.
To further decrease the costs of GRU models, several different
approaches have emerged [9–11], we can get sparse models, which
have similar performance with the raw models, by decreasing the
sparse block, hidden states, and biases of the gate units like the
update gate and reset gate. However, its pruning rate is not so high
and the pruned models struggle in dealing with complex tasks.
Network connection-based pruning methods [12,13] can achieve
a better pruning rate. However, it is debatable whether pruning
connections depend on their weight values only can lead to the
best pruning performance. Also, a lot of time-consuming ”prune-
retrain” loops exist in their training process, which results in a long
training process and may be avoidable. Therefore, the objective of
this work is to design a better pruning method that can achieve a
high pruning rate while keeping a satisfactory prediction perfor-
mance, also, without an expensive training process.

For this purpose, this paper designs a new pruning method and,
based on that, proposes a new pruned GRU model named Sparse-
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Connection Gated Recurrent Units (SCGRU). SCGRU uses a
controllable pruning threshold, which is based on the absolute
value of the weight, to identify and prune the neural connections
that have little effect on the gradient in the back-propagation pro-
cess. This is different from existing pruning methods which usually
assume that weights with larger absolute values play an important
role [14,13]. In fact, some regions in the parameter matrix may
have more influence on the prediction results [15]. Therefore, con-
trary to the strategy of ”randomly” retaining neural connections or
using ”prune-retrain” cycles to retain neural connections with
large weights, our method is designed to prune neural connections
that do not affect the model loss, which only needs to be executed
once during the whole training process.

The contributions of this paper are twofold:

� We propose a new pruning method that retains important con-
nections and can achieve a high pruning rate while preserving
good prediction accuracy.

� We show a new pruning pipeline that needs no ”prune-retrain”
cycles, which significantly reduces the training costs.

In addition, we test the SCGRU model through experiments on
two actual time-series prediction datasets, which demonstrates
its performance.

2. Related works

2.1. Compression methods of deep neural networks

The great success of Deep Neural Networks (DNNs) [16–18] has
inspired people to explore lightweight models. Therefore, many
classical compression methods based on the DNNs architectures
have been proposed [19,20,14,21–23]. According to whether the
network structure changes after compression as a reference, the
current network compression methods can be roughly divided into
three categories [13]:

1) Design a substitute for the original structure by changing the
structure of the original network to approximate the effect of
the original network [24,21,25–27]. Molchanov et al. [25] uses
Taylor expansion to approximate the contribution of each chan-
nel over the final loss and pruned the convolutional filters. Li
et al. [21] removes whole filters and their connected feature
maps that had a small effect on the output accuracy to reduce
computational cost. Yu et al. [26] proposes a global pruning
method that uses information gain to quantify the effect of fil-
ters on the network output and pruned filters accordingly. Lin
et al. [24] use global average pools instead of full connectivity
layers to reduce the memory requirements of the original net-
work. However, Szegedy et al. [28] point out that methods to
change the structure of the network apply only to specific tasks,
and that such methods can easily undermine the generalization
of the original network, making it difficult to conduct transfer
learning.
2) Delete redundant connections or some neurons based on the
significance criterion to speed up the training process [19,29–
33]. Karnin et al. [30] set the significance standard, based on
the weight loss sensitivity, of the redundant weight in the net-
work. In addition, Han et al. [14] used a weight threshold to
prune the gradient of backpropagation, and Guo et al. [22] used
a dynamic pruning strategy to flexibly choose weights. Guo
et al. [32] used the backpropagation process in the stochastic
and nonstationary environment to find and gradually prune
the weights of weak connections. Recently, SNiP proposed by
Lee et al. [33] introduces a saliency criterion based on the con-
16
nection sensitivity to identify the structurally important con-
nections in the network for a given task, and prunes the
network before pre-training, with almost no precision loss.
3) Reduce network storage requirements through weight quan-
tification without changing the network structure [34–36]. Hin-
ton et al. [34] proposed a soft weight sharing strategy to cluster
the weights so that the weights in the same group have similar
values, and obtain the performance of a regularized network.
Ullrich et al. [3] used a soft weight sharing strategy to fit a Gaus-
sian mixture prior model on the weights, compress the weights
to k-clusters, and finally reduce the bit size of each weight in
memory. HashedNets proposed by Chen et al. [36] used a low-
cost hash function to randomly group connection weights into
hash buckets, sharing the same parameter value for all connec-
tions in the same bucket, but this requires secondary parame-
ters to record the group membership of each weight.

2.2. Compression methods of RNNs

As the amount of data and the complexity of tasks increase, the
size of the recurrent neural network also increases. To effectively
deploy RNNs on mobile devices [37], Narang et al. [38,37] designed
a magnitude-based pruning strategy that can largely reduce the
network size during the training process and can increase the cal-
culation speed by 2–7 times. Dai et al.[39] employed grow-and-
prune (GP) training to iteratively adjust the hidden layers through
gradient-based growth and magnitude-based pruning of connec-
tions to ensure LSTM compactness. Wen et al. [11] proposed Intrin-
sic Sparse Structures (ISS) within LSTMs, which are used to prune
the gating unit of the k-th hidden state of LSTM to reduce memory
requirements. In the task of processing text data, Dey et al. [10]
explored three GRU variants that reduce update gate and reset gate
parameters and proved that GRU variants that only retain 33% of
the original parameters can obtain the same performance as the
original GRU. Zhang et al. [40] found that the pruning performance
of SNiP on GRU is worse than the random pruning method. See
et al. [41] combined the magnitude-based pruning method with a
special RNN structure and got pruned model with good prediction
performance. However, this type of method can only prune 80% of
the neural connections in the end.

One of the most impressive pruning methods is the RC-LSTM
[12], which retains only 1% of the neural connections in the origi-
nal network and increases computing speed by 30% with a small
precision drop. However, RCLSTM only made random connections
on the parameter matrix based on the idea of random graph theory
to reduce computational costs, which does not retain the connec-
tions that are of big importance. Sensitivity is based on the neural
network parameter matrix and used to choose targeted redundant
neural connections. Xiong et al. [13] designed sensitivity thresh-
olds based on parameter standard deviations to prune the weights
that have little effect on model performance, and proposed
SCLSTM, which outperforms RCSLTM in the same datasets. How-
ever, we find that the sensitivity threshold set by Xiong et al.
[13] do not pay attention to the negative weight that also affects
the result, and they need multiple ‘‘prune-retrain” cycles during
the training process. Our proposed method tries to retain a part
of the connections that play an important role in back-
propagation, and set a sensitivity threshold in the set of the abso-
lute value of parameter weights, which follows an approximate
chi-square distribution, that is convenient to better eliminate the
standard deviation fluctuation caused by outliers, and more accu-
rately choose redundant neural connections, solving the problem
that negative weights are usually ignored [13]. In addition, for bet-
ter comparison with the state-of-the-art methods like [12,13], we
extend their works into GRU, which are called RCGRU and X-GRU
in the experiments section.
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3. A sparse connected GRU architectures

The objective is to design a selective single pruning sche-me on
densely connected GRUs to handle redundant connections in a
given task, and ultimately, to reduce the memory consumption
while ensuring their performance. To this end, different from
recursive ‘‘prune-retrain” cycles, we design a new pruning strategy
that only includes one pruning process. The strategy consists of
pre-training, selective pruning, and fine-tuning, as shown in
Fig. 1. Fig. 2 shows the pruning process of our proposed sparse
GRU model, which we will introduce in detail in the following
sections.

3.1. Preparation and notation

For actual tasks, people usually need to adopt a network with
appropriate parameter size to obtain good prediction performance
while having a satisfactory generalization ability. However, how to
determine the size of the adopted neural network is still a problem
to be addressed. Actually, when learning a specific task, the neural
network is usually over-parameterized. As early as 1993, Reed
et al. [42] found that learning tasks can be completed through a
smaller network and the generalization ability can be improved.
To this end, our goal is to learn a sparse GRU network while main-
taining the performance of the standard reference network. We
first regard GRU network pruning as an optimization problem.

Given a dataset D ¼ x tð Þ� �n

t¼1, and a sliding window size s 2 Nþ

(s.t. s < n), where x tð Þ 2 R1�1. Through the slider processing, a new
Fig. 1. The pipeline comparison between (a) a typical pruning method [14] and (b)
the .proposed method.

Fig. 2. The pruning process of neural conn
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input dimension m ¼ n� sþ 1 is obtained, and a time-series data-

set DT ¼ X tð Þ; y tð Þ
n om

t¼1
is formed, where X tð Þ 2 R1� s�1ð Þ; y tð Þ 2 R1�1.

There are two specific gate structures in GRU: update gate z tð Þ

and reset gate r tð Þ,

z tð Þ ¼r Wz x tð Þ; h t�1ð Þ
h i

þ bz

� �
; ð1Þ

r tð Þ ¼r Wr x tð Þ; h t�1ð Þ
h i

þ br

� �
; ð2Þ

in which r is the activation function (Sigmoid function used in this

paper), h t�1ð Þ is the hidden state at time t � 1;Wz and Wr are both
p� q

3 dimensional parameter matrices, 0 < p < m;0 < q < s.
As a variant of RNN, the components of GRU also inherit the fol-

lowing structure,eh tð Þ ¼g Wh x tð Þ;h t�1ð Þ � r tð Þ
h i

þ bh

� �
; ð3Þ

h tð Þ ¼ 1� z tð Þ� � � h t�1ð Þ þ z tð Þ � eh tð Þ; ð4Þ
where g is the activation function, such as the hyperbolic tangent

function or the rectified linear unit (ReLU) [43], Wh 2 Rp�q
3.

To facilitate understanding and calculation, GRU is defined as a
mapping relationship completed by iterative calculation:

h tð Þ
; ŷ tð Þ

� �
¼ GRU W;h t�1ð Þ

;X tð Þ
� �

; ð5Þ

where W 2 Rp�q is the consecutive combination of the three linear
operation parameter matrices (i.e., the Wz;Wr and Wh) in the GRU
model, and ŷ tð Þ is the predicted value at time t.

3.2. GRU parameter pruning: architectural perspective

With the parameter matrix W after pre-training, we can get the
sensitivity threshold eas

e ¼ k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp;q
i;j

Wij

		 		� Wj j		 		2
p � q

vuuuut
; ð6Þ
ections from standard GRU to SCGRU.



Table 1
Detaile information of the LAN traffic datasets.

Properties Content

Bandwidth Points 23
Time Span 2005/01/01–2005/04/29
Time Interval 15 min
Data Unit Kbps
Daily Range All day
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where k is a parameter to control the threshold e, and Wj j 2 R1�1 is
the mean value after the absolute value of the weight. The sensitiv-
ity threshold e is used to compare with each weight in the matrixW,
finding the targeted redundant parameters, and then guides the
parameter selection in the matrix W in the forward propagation
process. Given a desired sparsity level k (i.e., the proportion of
non-zero weights), which is an upper bound on the true pruning
rate, the model constraints are generated as

k P

Xp;q
i;j

Wij

		 		 < e
� �
p � q ¼ Wj j < ek k0

p � q : ð7Þ

We introduce auxiliary indicator variables c 2 0;1f gp to ensure
that the pruned connections are no longer revived through back-
propagation. Corresponds to parameter matrix W, mask matrix

C ¼ c>1 ; c
>
2 ; � � � ; c>q

n o
that value obeys:

Cij ¼ 0; Wij

		 		 < e;
1; otherwise:

(
ð8Þ

where Cij is the element in the i-th row and j-th column of the mask
matrix C that is mainly used to record the coordinates of redundant
connections. To ensure the effectiveness of selective single pruning,
the optimization problem is transformed into:

min L W;DTð Þ ¼ min 1
pq

Xp;q
i;j

L C �W; Xij; yi
� �� �

;

s:t: k P Wj j < ek k0 ¼ Ck k0;
ð9Þ

where L is the loss function. The mask matrix C is the key factor to
ensure a single pruning, which not only remove the weight of the
corresponding position in the forward propagation process, but also
prevent the discarded weight from repeating during the training
phase.

Finally, the overview and implementation steps of the entire
optimization process are shown in Algorithm 1.

Algorithm1 One-shot Pruning GRU

Require: Dataset DT , Parameters W Wg ;Wo
� �

, sensitivity k,
sparsity level k

Ensure: k > 0, p ¼ row Wð Þ, q ¼ col Wð Þ, k P W0k k0
p�q

W (Pre-training
for all W ¼ Wg ;Wo

� �
do

h ( abs Wð Þ;
�e ( mean

P
i;j abs Wð Þ �mean hð Þð Þ

n o
Label : e ( k � sqrt �eð Þ
for all hijji ¼ 1;2; � � � p; j ¼ 1;2; � � � q� �

do
Cij ( hij < e ? 0 : 1

end for
W0 ( W � C

end for
Fig. 3. The visualization of the power load dataset, which is
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4. Experiments results

4.1. Datasets description

We use two time-series datasets, including the Local Area Net-
work (LAN) traffic dataset from GÉANT [44] and the power load
dataset of a province in southern China, to evaluate our method’s
performance.

The power load dataset comes from a power grid and is
recorded every 5 min from January 2014 to June 2016. The data
unit is MW. There are 257,184 items in the original dataset, and
each item is composed of record time and power load value. As
shown in Fig. 3, these records reflect the annual periodicity of
the electrical load.

The LAN traffic dataset is the actual traffic data captured from
the links in the GÉANT (i.e. a pan-European data source for research
and education) backbone network. 23 bandwidth points were sam-
pled every 15 min for 4 months, and the unit of data point is Kbps.
The dataset is composed of a flow matrix constructed using the
complete interior gateway protocol (IGP) routing information,
and is recorded in extensible markup language (XML) form, where
each piece of data can be mapped into a flow matrix with a size of
23�23. For comparison, we selected 10,772 traffic data points
therein. The detailed information of the LAN traffic datasets is
shown in Table 1.
4.2. Experimental setup

In the power load forecasting experiment, based on the needs of
real-time traffic forecasting, we introduce a sliding window and set
the input flow sequence length to 100. We normalize the original
data as the logarithm of base 10 to make the neural network model
converge faster in the training phase. Meanwhile, the hidden units
of all GRU-based neural networks (except GRU-35 [8]) are uni-
formly set to 350, the batch size is set to 128, the random seed is
set to 42, and the ratio of the number of training samples to the
number of test samples is set to 9:1. The adaptive moment estima-
tion (Adam) [45] optimizer is used in the training process, the
learning rate is set to 0.001, and the weight decay is 1e-5. The Root
Mean Square Error (RMSE) is used to measure the difference
between the predicted value and the actual value. We compare
the proposed method with RCGRU[12], Xiong’s approach (called
X-GRU for short) [13], GVGRUs [10], Support Vector Regression
(SVR) [46], and Feed Forward Neural Networks (FFNNs) [47].
recorded every 5 min from January 2014 to June 2016.



H. Tang, X. Ling, L. Li et al. Neurocomputing 512 (2022) 15–24
Among them, the input dimension of FFNN is set to 100, three hid-
den layers are defined, and the number of neurons in each hidden
layer is set to 50. SVR selects RBF as the kernel, the tolerance of the
stopping criterion is 0.001, and the number of input features is set
to 100.

On the other hand, the parameter settings in the LAN traffic pre-
diction experiment are basically the same as above. The difference
is that the batch size is set to 32, the weight decay is 9e-5, FFNN
sets two hidden layers with a dimension of 50, and the Autoregres-
sive Integrated Moving Average (ARIMA) [48] model is added to
the comparison. In ARIMA, the autoregressive term is set to 5,
the number of non-seasonal differences is 1, and the moving aver-
age is 0.

In addition, we compare the prediction performance of three
neural connection-based sparse models, namely RCGRU, X-GRU,
and SCGRU, with and without fine-tuning.

4.3. Results on the power load dataset

Fig. 4(c) shows the parameter sizes of the models used in the
power load forecasting task. The orange in the figure indicates
the number of pruned parameters, and the blue indicates the num-
ber of parameters retained. It can be seen from Fig. 4(c) that com-
pared with the original model, GVGRU1 only prune out a small
number of parameters, and the parameters of GVGRU2 and
GVGRU3 are about 1/3 of the original. The parameters of RCGRU,
X-GRU, and SCGRU are of the same order of magnitude. For subse-
quent experiments, the parameters of FFNNs and GRU-35 are also
set to be the same as SCGRU.

Fig. 4(b) shows the convergence performance comparison of
SCGRU with traditional models SVR, FFNNs, and GRU-based sparse
models (i.e. GVGRUs, RCGRU, and X-GRU) on the power load data-
set. It can be seen from the convergence performance that all GRU-
based models are better than SVR and FFNNs. The convergence per-
formance of GVGRU1 and GVGRU2 with more parameters is better
than GVGRU3 with fewer model parameters. In addition, among
the sparse models, our SCGRU has a better convergence perfor-
mance than RCGRU and X-GRU under the same parameters.

Fig. 4(a) shows the performance comparison between our
SCGRU and some state-of-the-art models in power load forecast-
ing. From the comparison results, it can be seen that the perfor-
mance of the GRU-based model is better than that of FFNNs and
SVR. Also, SCGRU, with a pruning rate of 97%, can give more accu-
Fig. 4. The comparison of (a) prediction performance, (b) convergence speed, and (c) pa
dataset.
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rate predictions than all other models, even densely-connected
GRU. It has been proven[20,14] that the performance of the pruned
network is similar or even better than that of the densely-
connected network.

In order to better analyze the differences and details between
our model and the recently proposed state-of-the-art sparse mod-
els. We compared the number of parameters, the sparse ratio, the
pruning period, and the prediction error (RMSE) of each model in
Table 2. We can see that SCGRU has the best performance in terms
of parameter size, pruning rate, and prediction accuracy. Also,
GVGRU1 can reduce the parameters by 0.19% and has a better per-
formance than the fully connected GRU (FC-GRU); GVGRU2, which
has abandoned the bias, has a 66.41% pruning rate and the model
performance is slightly worse than the fully connected GRU;
RCGRU has a large performance drop due to its large pruning rate;
X-GRU is able to prune 95% of the parameters with a small perfor-
mance drop.

4.4. Results on the LAN traffic dataset

Fig. 5 shows the comparison of the prediction performance of
SCGRU and some existing models on the LAN traffic dataset,
Fig. 6 shows the convergence performance of all these models. It
can be seen that SCGRU has better prediction performance and
convergence performance than other connection-based methods
(RCGRU and X-GRU).

Also, as shown in Table 3GVGRU1 prunes 0.19% of the parame-
ters but leads to worse prediction accuaracy; GVGRU2 and
GVGRU3 can prune about 66% of the original parameters and their
performance do not decrease significantly; RCGRU and X-GRU have
a high pruning rate (97%) and good prediction performances but
there are multiple pruning operations. In particular, SCGRU has
the highest pruning rate and the best prediction accuracy. Also, it
has the best performance in most metrics among the connection-
based methods.

4.5. Pruning Performance Analysis

4.5.1. In Power Load Task
Fig. 7 shows the performance comparison of SCGRU, X-GRU, and

RCGRU in the power load prediction task under different pruning
rates. Without fine-tuning, the performance of the random sparse
model decreases rapidly as the number of parameters decreases,
rameter size between SCGRU and some state-of-the-art models on the power load



Table 2
Comparison results in the power load prediction task. NVIDIA GTX 1080 GPU is used for model training and time calculation.

Architecture Model Parameters Sparse(%) #Prune RMSE

Baseline FC-GRU 361.3 K – – 0.004593
GRU-35 3.8 K – – 0.004557

Classic FFNNs 7.5 K – – 0.006411
SVR – – – 0.006145
ARIMA – – – 0.007222

Structure based GVGRU1 360.6 K 0.19 Sparse structure 0.004547
GVGRU2 121.3 K 66.41 Sparse structure 0.004649
GVGRU3 120.6 K 66.61 Sparse structure 0.005463

Connection based RCGRU 3.6 K 97 many 0.005450
X-GRU 6 K 95 many 0.004712
SCGRU(Our) 3.6 K 97 1 0.004455

Fig. 5. Prediction performance comparison between SCGRU and some existing
models on the LAN traffic dataset.

Fig. 6. Convergence curves of SCGRU and some existing models on the LAN traffic
dataset.
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as shown in Fig. 7(a)(a). X-GRU can maintain good performance
with a pruning rate lower than 80%. The performance of SCGRU
starts to decrease when more than 70% of the parameters are
pruned. However, SCGRU is the only model that can maintain good
20
performance even at a 90% pruning rate. As shown in Fig. 7(b). The
performance of the three models improved significantly after fine-
tuning. The optimal pruning rate of X-GRU is the lowest among the
three, which is around 95%. Although RCGRU can have a pruning
rate beyond 97%, its performance is not as good as X-GRU. We
can see that, among these three pruning methods, the proposed
SCGRU has the best performance with any pruning rate. With a
pruning rate of 97%, our model performance can still maintain a
good performance (In fact, it is still better than FC-GRU according
to the results in Table 2).

Table 4 shows the best pruning rate (BPR) and the best extreme
pruning rate (BEPR) of each model without fine-tuning of RCGRU,
X-GRU, and RCGRU. From Table 4, we can know that RCGRU’s per-
formance is not good when fine-tuning is not used. The BPR of X-
GRU is better than SCGRU, but SCGRU has the best extreme prun-
ing performance. Without fine-tuning, SCGRU can have a pruning
rate of 90% and the performance drop is not significant. Table 5
shows the performance comparison of each model after fine-
tuning. RCGRU has a very high sparse ability, but with some perfor-
mance drop. X-GRU can guarantee good performance with a lower
pruning rate at 95%. SCGRU can achieve the best performance in all
these four metrics.

4.5.2. In LAN task
Fig. 8 shows the performance comparison of SCGRU, RCGRU,

and X-GRU in LAN traffic prediction tasks under different pruning
rates. Fig. 8(a) gives the results of pruned models without fine-
tuning. With the decrease of parameters, the performance of the
random sparse model drops accordingly. When X-GRU prunes
more than 70% of the parameters, its performance began to drop
sharply. SCGRU can prune 80% of the parameters without signifi-
cant performance loss. Fig. 8(b) is the results of pruned models
with fine-tuning. Compared with no fine-tuning, the performance
of the three models is significantly improved. The best pruning rate
of RCGRU and X-GRU is 97%, and SCGRU has the best model perfor-
mance with the pruning rate of 98%. Notably, SCGRU can achieve a
99.3% pruning rate without significant performance loss.

Table 6 shows that, without fine-tuning, the performance of
RCGRU drops a lot. The proposed SCGRU can prune 70% of the
parameters without significant performance loss. X-GRU can have
the second-best performance with a slightly lower pruning rate.
Table 7 shows the results of fine-tuned models. We can see that
SCGRU has the best performance while having the highest pruning
rates.

4.6. Performance on LSTM

In addition, we extend proposed pruning method to LSTM and
test its performance on two datasets (i.e., the LAN traffice dataset
and the power load dataset). In the LAN traffic prediction experi-
ment, the experimental settings are following SCLSTM [13], while



Table 3
Comparison results in the LAN traffic prediction task. NVIDIA GTX 1080 GPU is used for model training and test.

Architecture Model Parameters Sparse(%) #Prune RMSE

Baseline FC-GRU 361.3 K – – 0.0616
GRU-35 3.8 K – – 0.0664

Classic FFNNs 7.5 K – – 0.0730
SVR – – – 0.0750
ARIMA – – – 0.0780

Structure based GVGRU1 360.6 K 0.19 Sparse structure 0.0637
GVGRU2 121.3 K 66.41 Sparse structure 0.0627
GVGRU3 120.6 K 66.61 Sparse structure 0.0631

Connection based RCGRU 3.6 K 97 many 0.0636
X-GRU 3.6 K 97 many 0.0620
SCGRU(Our) 2.4 K 98 1 0.0601

Fig. 7. The performance loss of SCGRU, X-GRU and RCGRU under different pruning rates in the power load prediction task. (a) without fine-tuning; (b) with fine-tuning. Here
DRMSE ¼ RMSEbefore � RMSEafter .

Table 4
BPR/BERP comparison of SCGRU, X-GRU, and RCGRU (without fine-tuning) on the
power load dataset.

Model BPR Best RMSE BEPR BEP RMSE

RCGRU 10% 0.00947 – –
X-GRU 80% 0.00484 – –
SCGRU 70% 0.00487 90% 0.00567

Table 5
BPR/BERP comparison of SCGRU, X-GRU, and RCGRU (with fine-tuning) on the power
load dataset.

Model BP Best RMSE BEP BEP RMSE

RCGRU 97% 0.00545 98% 0.00665
X-GRU 95% 0.00471 96% 0.00536
SCGRU 97% 0.00445 98.4% 0.00468

Fig. 8. The performance loss of SCGRU, X-GRU and RCGRU under different pruning rates
DRMSE ¼ RMSEbefore � RMSEafter .
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in the power data prediction experiment, the experimental setting
is the same as that in Section 4.2. Among the comparison methods,
SCLSTM was proposed by Xiong et al. [13], and RCLSTM was pro-
posed by Hua et al. [12], and the baseline is a densely connected
LSTM.

Table 8 shows the comparison results of RCLSTM, SCLSTM, our
method, and the baseline method on the LAN dataset. Our method
can prune 99.24% of the parameters in the densely-connected
LSTM, while having the best prediction performance among the
comparison methods. Table 9 shows that the results on the power-
load dataset. The pruning methods all have an accuracy loss under
their respective optimal pruning rates. For RCLSTM, the accuracy
loss is 28.9%; for SC-LSTM, it is 22%; for our method, it is only
7.3% while pruning 99% parameters of the densely-connected
networks.

Experimental results show that our method can be extended to
LSTMs and can outperform existing methods. Table 10.
in the LAN traffic prediction task. (a) without fine-tuning; (b) with fine-tuning. Here



Table 6
BPR/BERP comparison of SCGRU, X-GRU, and RCGRU (without fine-tuning) on the LAN
traffic dataset.

Model BPR Best RMSE BEPR BEP RMSE

RCGRU 10% 0.1022 – –
X-GRU 60% 0.0671 70% 0.1143
SCGRU 70% 0.0629 80% 0.0913

Table 7
BPR/BERP comparison of SCGRU, X-GRU, and RCGRU (with fine-tuning) on the LAN
traffic dataset.

Model BP Best RMSE BEP BEP RMSE

RCGRU 97% 0.0636 98% 0.0713
X-GRU 97% 0.0620 98% 0.1073
SCGRU 98% 0.0601 99.3% 0.0637

Table 8
Our approach is extended to LSTMs and results compared with other models on the
LAN traffic dataset.

Model Parameters Sparse(%) RMSE

baseline 0.36 M – 0.0605
RCLSTM 7.4 K 98.3% 0.0640
SCLSTM 3.1 K 99.1% 0.0601
Our 2.8 K 99.2% 0.0599

Table 9
Our approach is extended to LSTMs and results compared with other models on the
power load dataset.

Model Parameters Sparse(%) RMSE

baseline 482 K – 0.005604
RCLSTM 14.4 K 97% 0.007227
SCLSTM 5.1 K 99% 0.006851
Our 5.1 K 99% 0.006015

Table 10
The relationship between pre-training batches and pruning results on the power load
dataset.

Epochs RMSE

0 0.1019
1 0.0619
2 0.0612
5 0.0601
10 0.0624

H. Tang, X. Ling, L. Li et al. Neurocomputing 512 (2022) 15–24
4.7. Pre-training analysis

Small batch pre-training can improve the final pruning perfor-
mance. We conduct a pre-training experiment on the LAN dataset.
By setting different pre-training epochs, the final pruning perfor-
mance varies. The best performance is obtained when the pre-
training epoch is set as 5.

5. Conclusions and future work

In this work, we redesigned the neural connection of the GRU
model for time-series prediction tasks. We proposed a model
called SCGRU, the basic idea of which is to select important con-
nections based on the sensitivity of neural connections rather than
the weights values. This design can lead to GRU models with high
pruning rates while having a satisfactory performance. Different
from other connection-based pruning methods, SCGRU only needs
22
one pruning process, which significantly decreases the training
costs. Experimental results show that the proposed SCGRU method
outperforms the existing pruning methods in terms of model per-
formance and pruning rate. Also, it has the least training/inference
costs among the connection-based methods. In summary, SCGRU
can give GRU models with fewer computation costs, storage bur-
den, as well as network complexity while maintaining good perfor-
mance, making it easier to deploy on platforms with limited
resources.

In future work, we may study the relationship between the
sparsity and robustness of GRUs and improve the anti-
interference ability of GRUs in time series prediction, which has
very high commercial and civilian value. In particular, it is also of
great significance to study an algorithm that can automatically
give the reference sparsity rate of GRU in different learning tasks,
so there is still a lot of work to do.
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