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Figure 1. Positive and negative explanations. The images from top to down are from the test sets of MNIST [22], Con-text
[20], and CUB-200 [39] datasets. The models trained with positive (+) and negative (−) SCOUTER losses can respectively
highlight the positive and negative supports, based on which one can reason why or why not the images are classified into the
corresponding categories.

Abstract
Explainable artificial intelligence has been gaining at-

tention in the past few years. However, most existing meth-
ods are based on gradients or intermediate features, which
are not directly involved in the decision-making process of
the classifier. In this paper, we propose a slot attention-
based classifier called SCOUTER for transparent yet ac-
curate classification. Two major differences from other
attention-based methods include: (a) SCOUTER’s expla-
nation is involved in the final confidence for each category,
offering more intuitive interpretation, and (b) all the cat-
egories have their corresponding positive or negative ex-
planation, which tells “why the image is of a certain cate-
gory” or “why the image is not of a certain category.” We
design a new loss tailored for SCOUTER that controls the

model’s behavior to switch between positive and negative
explanations, as well as the size of explanatory regions. Ex-
perimental results show that SCOUTER can give better vi-
sual explanations in terms of various metrics while keeping
good accuracy on small and medium-sized datasets. Code
is available1.

1. Introduction
It is of great significance to know how deep models make

predictions, especially for the fields like medical diagno-
sis, where potential risks exist when black-box models are
adopted. Explainable artificial intelligence (XAI), which
can give a close look into models’ inference process, there-
fore has gained lots of attention.

1https://github.com/wbw520/scouter



The most popular paradigm in XAI is attributive expla-
nation, which gives the contribution of pixels or regions to
the final prediction [31, 7, 28, 30]. One natural question that
arises here is how these regions contribute to the decision.
For a better view of this, let gl(v) = w⊤

l v + bl denotes a
fully-connected (FC) classifier for category l, where wl and
bl are trainable vector and scalar, respectively. Training this
classifier may be interpreted as a process to find from the
training samples a combination of discriminative patterns
sli with corresponding weight γi, i.e.,

gl(v) =

(∑
i

γis
⊤
li

)
v + bl. (1)

In general, these patterns can include positive and negative
ones. Given v of an image of l, a positive pattern gives
s⊤liv > 0. A negative pattern, in contrast, gives s⊤liv < 0
for v of any category other than l, which means that the
presence of pattern described by sli is a support of not being
category l. Therefore, set Sl of all (linearly independent)
patterns for l can be the union of sets S+

l and S−
l of all

positive and negative patterns.
Differentiation of positive/negative patterns gives use-

ful information on the decision. Figure 1(top) shows an
MNIST image for example. One of positive patterns that
makes the image being 7 can be the acute angle formed by
white line segments that appears around the top-right cor-
ner, as in the second image. Meanwhile, the sixth image
shows that the presence of the horizontal line is the support
not being 1. A more practical application [2] in medical
image analysis also points out the importance of visualizing
positive/negative patterns. Nevertheless of the obvious ben-
efit, recent mainstream methods like [49, 31, 27, 10] have
not extensively studied this differentiation.

Positive and negative patterns lead to two interesting
questions: (i) Can we provide positive explanation and neg-
ative explanation that visually show support regions in the
image that correspond to positive and negative patterns? (ii)
As the combination of patterns to be learned is rather arbi-
trary and any combination is possible as long as it is dis-
criminative; can we provide preference on the combination
in order to leverage prior knowledge on the task in training?

In this paper, we re-formulate explainable AI with an ex-
plainable classifier, coined SCOUTER (Slot-based COnfig-
Urable and Transparent classifiER), which tries to find ei-
ther positive or negative patterns in images. This approach
is similar to the attention-based approach (e.g. [21, 40])
rather than the post-hoc approaches [49, 31, 30]. Our newly
proposed explainable slot attention (xSlot) module is the
main building block of SCOUTER. This module is built on
top of the recently-emerged slot attention [23], which offers
an object-centric approach for image representation. The
xSlot module identifies the spatial support of either positive
or negative patterns for each category in the image, which

is directly used as the confidence value of that category; the
commonly-used FC classifier is no longer necessary. The
xSlot module can also be used to visualize the support as
shown in Fig. 1. SCOUTER is also characterized by its
configurability over patterns to be learned, i.e., the choice
of positive or negative pattern and the desirable size of the
pattern, which can incorporate the prior knowledge on the
task. The controllable size of explanation can be beneficial
for some applications, e.g., disease diagnosis in medicine,
defect recognition in manufacturing, etc.
Contribution Our transparent classifier, SCOUTER, ex-
plicitly models positive and negative patterns with a dedi-
cated loss, allowing to set preference over the spatial size
of patterns to be learned. We experimentally show that
SCOUTER successfully learns both positive and negative
patterns and visualize their support in the given image as
the explanation, achieving state-of-the-art results in several
commonly-used metrics like IAUC/DAUC [27]. Our case
study in medicine also highlights the importance of both
types of explanations as well as controlling the area size of
explanatory regions.

2. Related Work

2.1. Explainable AI

There are mainly three XAI paradigms [43], i.e. post-
hoc, intrinsic, and distillation. The post-hoc paradigm usu-
ally provides a heat map highlighting important regions
for the decision (e.g. [31, 30]). The heat map is com-
puted besides the forward path of the model. The intrin-
sic paradigm explores the important piece of information
within the forward path of the model, e.g., as attention maps
(e.g. [21, 40, 24, 42]). Distillation methods are built upon
model distillation [16]. The basic idea is to use an inher-
ently transparent model to mimic the behaviors of a black-
box model (e.g. [48, 29]).

The post-hoc paradigm has been extensively studied
among them. The most popular type of methods is based
on channel activation or back-propagation, including CAM
[49], GradCAM [31], DeepLIFT [32], and their extensions
[3, 25, 36, 35, 7]. Another type of method is perturbation-
based, including Occlusion [45], RISE [27], meaningful
perturbations [11], real-time saliency [5], extremal pertur-
bations [10], I-GOS [28], IBA [30], etc. These methods
basically give attributive explanation, which visualizes sup-
port regions of learned patterns for each category l in the set
of all possible categories L. This visualization can be done
by finding regions in feature maps or the input image that
give large impact on the score gl. By definition, attributive
explanation is the same as our positive explanation.

Some of the methods for attributive explanation thus can
be extended to provide negative explanations by negating
the sign of the score, feature maps, or gradients. It should



be noted that the interpretation of visual explanation by
gradient-based methods [31, 3, 25] may not be straightfor-
ward because of linearization of gl for the given image; and
thus the resulting visualization may not highlight the sup-
port regions for negative patterns. GradCAM [31] refers to
its negative variant as counterfactual explanation that gives
regions that can change the decision, emphasizing how it
should be interpreted.

Discriminant explanation is a new type of XAI in the
post-hoc paradigm, which appeared in [38] to show “why
image x belongs to category l rather than l′.” This can be
interpreted using set S+

l of all possible positive patterns for
l and set S−

l′ of all possible negative patterns for l′: It try
to spot a (combination of) discriminative pattern s that is
in the intersection S+

l ∩ S−
l′ . Due to the unavailability of

negative patterns, the method [38] first finds (a combination
of) positive patterns and uses the complementary of the re-
gion containing the positive patterns as a proxy of negative
patterns. Goyal et al. gives another line of counterfactual
explanation in [13]. Given two images of categories l and
l′, they find the region in the image of l, of which replace-
ment to a certain region in the image of l′ changes the pre-
diction from l to l′. This can be also implemented using
discriminant explanation.

SCOUTER computes a heat map to spot regions impor-
tant for the decision in the forward path, so it falls into the
intrinsic paradigm. Together with the dedicated loss, it can
directly identify positive and negative patterns with control
over the size of patterns.

2.2. Self-attention in Computer Vision

Self-attention is first introduced in the Transformers
[34], in which self-attention layers scan through the in-
put elements one by one and update them using the ag-
gregation over the whole input. Initially, self-attention is
used in place of recurrent neural networks for sequential
data, e.g., natural language processing [8]. Recently, self-
attention is adopted to the computer vision field, e.g., Image
Transformer [26], Axial-DeepLab [37], DEtection TRans-
former (DETR) [1], Image Generative Pre-trained Trans-
former (Image GPT) [4], etc. Slot attention [23] is also
based on this mechanism to extract object-centric features
from images (there are some other works [15, 12] using the
concept of slot); however, the original slot attention is tested
only on some synthetic image datasets. SCOUTER is based
on slot attention but is designed to be an explainable classi-
fier applicable to natural images.

3. SCOUTER
Given an image x, the objective of a classification model

is to find its most probable category l in category set L =
{l1, l2, . . . , ln}. This can be done by first extracting features
F = B(x) ∈ Rc×h×w using a backbone network B. F is
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Figure 2. Classification pipeline. (a) Overview of the classification
model. (b) The xSlot Attention module in SCOUTER.

then mapped into a score vector o ∈ Rn, representing the
confidence values, using FC layers and softmax as the clas-
sifier. However, such FC classifiers can learn an arbitrary
(nonlinear) transformation and thus can be black-box.

We replace such an FC classifier with our SCOUTER
(Fig. 2(a)), consisting of the xSlot attention module, which
produces the confidence for each category given features
F . The whole network, including the backbone, is trained
with the SCOUTER loss, which provides control over the
size of support regions and switching between positive and
negative explanations.

3.1. xSlot Attention

In the original slot attention mechanism [23], a slot is a
representation of a local region aggregated based on the at-
tention over the feature maps. A single slot attention mod-
ule with multiple slots is attached on top of the backbone
network B. Each slot produces its own feature as output.
This configuration is handy when there are multiple objects
of interest. This idea can be transferred to spot the supports
in the input image that leads to a certain decision.

The main building block of SCOUTER is the xSlot at-
tention module, which is a variant of the slot attention mod-
ule tailored for SCOUTER. Each slot of the xSlot attention
module is associated with a category and gives the confi-
dence that the input image falls into the category. With the
slot attention mechanism, the slot for category l is required
to find support Sl in the image that directly correlates to l.

Given feature F , the xSlot attention module updates slot
w

(t)
l for T times, where w

(t)
l represents the slot after t up-

dates and l ∈ L is the category associated to this slot. The



slot is initialized with random weights, i.e.,

w
(0)
l ∼ N (µ, diag(σ)) ∈ R1×c′ , (2)

where µ and σ are the mean and variance of a Gaussian, and
c′ is the size of the weight vector. We denote the slots for
all categories by W (t) ∈ Rn×c′ .

The slot W (t+1) is updated using W (t) and feature F .
Firstly, F goes through a 1 × 1 convolutional layer to re-
duce the number of channels and the ReLU nonlinearity as
F ′ = ReLU(Conv(F )) ∈ Rc′×d

+ , with F ’s spatial dimen-
sions being flattened (d = hw). F ′ is augmented by adding
the position embedding to take the spatial information into
account, following [34, 1], i.e. F̃ = F ′ + PE, where PE is
the position embedding. We then use two multilayer per-
ceptrons (MLPs) Q and K, each of which has three FC lay-
ers and the ReLU nonlinearity between them. This design is
for giving more flexibility in the computation of query and
key in the self-attention mechanism. Using

Q(W (t)) ∈ Rn×c′ , K(F̃ ) ∈ Rc′×d, (3)

we obtain the dot-product attention A(t) using sigmoid σ as

A(t) = σ(Q(W (t))K(F̃ )) ∈ (0, 1)n×d. (4)

The attention is used to compute the weighted sum of
features in the spatial dimensions by

U (t) = A(t)F ′⊤ ∈ Rn×c′ , (5)

and slot W (t) is eventually updated through a gated recur-
rent unit (GRU) as

W (t+1) = GRU(U (t),W (t)), (6)

taking U (t) and W (t) as input and hidden state, respectively.
Following the original slot attention module, we update the
slot for T = 3 times.

The output of the xSlot attention module is the sum of
all elements for category l in U (T ), which is a function of
F . Formally, the output of xSlot Attention module is:

xSlot(F ) = U (T )1c′ ∈ Rn
+, (7)

where 1 is the column vector with all c′ elements being 1.
From Eqs. (5) and (7), we have xSlot(F ) = A(T )F ′⊤1c′ ,

where F ′⊤1c′ ∈ Rd is a reduction of F and is a class-
agnostic map. The l-th row of A(T ) can then be viewed
as spatial weights over map F ′⊤1c′ to spot where the sup-
port regions for category l is2. In order for visualizing the
support regions, we reshape and resize each row of A(T ) to
the input image size.

2F ′⊤1c′ can be viewed as a single map that includes a mixture of
supports for all categories.

Note that in the original slot attention module, a linear
transformation is applied to the features, i.e., V (F̃ ), which
is then weighted using Eq. (5). However, the xSlot atten-
tion module omits this transformation as it already has a
sufficient number of learnable parameters in Q, K, GRU,
etc., and thus the flexibility. Also, the confidences, given
by Eq. (7), are typically computed by an FC layer, while
SCOUTER just sums up the output of xSlot attention mod-
ule, which is actually the presence of learned supports for
each category. This simplicity is essential for a transparent
classifier as discussed in Section 3.3.

3.2. SCOUTER Loss

The whole model, including the backbone network, can
be trained by simply applying softmax to xSlot(F ) and min-
imizing cross-entropy loss ℓCE. However, there is a phe-
nomenon that, in some cases, the model prefers attending
to a broad area (e.g., a slot covers a combination of several
supports that occupy large areas in the image) depending on
the content of the image. As argued in Section 1, it can be
beneficial to have control over the area of support regions to
constrain the coverage of a single slot.

Therefore, we design the SCOUTER loss to limit the
area of support regions. The SCOUTER loss is defined by

ℓSCOUTER = ℓCE + λℓArea, (8)

where ℓArea is the area loss, λ is a hyper-parameter to adjust
the importance of the area loss. The area loss is defined by

ℓArea = 1⊤
nA

(T )1d, (9)

which simply sums up all the elements in A(T ). With larger
λ, SCOUTER attends smaller regions by selecting fewer
and smaller supports. On the contrary, it prefers a larger
area with smaller λ.

3.3. Switching Positive and Negative Explanation

The model with the SCOUTER loss in Eq. (8) can only
provide positive explanation since larger elements in A(T )

means the prediction is made based on the corresponding
features. We introduce a hyper-parameter e ∈ {+1,−1} in
Eq. (7), i.e.,

o = xSlote(F ) = e · U (T )1c′ ∈ Rn
+, (10)

where o = {o1, . . . , on}. This hyper-parameter configures
the xSlot attention module to learn to find either positive or
negative supports.

With the softmax cross-entropy loss, the model learns to
give the largest confidence ol corresponding to ground-truth
(GT) category l and a smaller value ol′ to wrong category
l′ ̸= l. For e = +1, all elements given by xSlot is non-
negative since both A(T ) and F ′ are non-negative and thus



U (T ) is. For arbitrary non-negative F ′, thanks to simple
reduction in Eq. (7), larger ol can be produced only when
some elements in a

(T )
l , the row vector in A(T ) correspond-

ing to l, is close to 1, whereas a smaller ol′ is given when
all elements in a

(T )
l are close to 0. Therefore, by setting

e to +1, the model learns to find the positive supports S+
l

among the images of the GT category. The visualization of
a
(T )
l thus serves as positive explanation, as in Fig. 1 (left).

On the contrary, for e = −1, all elements in o are neg-
ative and thus the prediction by Eq. (10) gives ol close to 0
for correct category l and smaller ol′ for non-GT category l′.
To make ol close to 0, all elements in a

(T )
l must be close to

0, and a smaller ol′ is given when a
(T )
l′ has some elements

close to 1. For this, the model learns to find the negative
supports S− that do not appear in the images of the GT cat-
egory. As a result, a(T )

l′ can be used as negative explanation,
as shown in Fig. 1 (right).

4. Experiments

4.1. Experimental Setup

We chose to use the ImageNet dataset [6] for a detailed
evaluation of SCOUTER, because of the following three
reasons: (i) It is commonly used in the evaluation of clas-
sification models. (ii) There are many classes with simi-
lar semantics and appearances, and the relationships among
them are available in the synsets of the WordNet, which can
be used to evaluate positive and negative explanations. (iii)
Bounding boxes are available for foreground objects, which
helps measure the accuracy of visual explanation. In ex-
periments, we use subsets of ImageNet by extracting the
first n (0 < n ≤ 1, 000) categories in the ascending order
of the category IDs. Also, we present classification per-
formance on Con-text [20] and CUB-200 [39] datasets and
illustrate glaucoma diagnosis using quantitative and quali-
tative results on ACRIMA [9] dataset.

The size of images is 260×260. The feature F extracted
by the backbone network is mapped into a new feature F ′

with the channel number c′ = 64. The models were trained
on the training set for 20 epochs and the performance scores
are computed on the validation set with the trained models
after the last epoch. All the quantitative results are obtained
by averaging the scores from three independent runs.

4.2. Explainability

To evaluate the quality of visual explanation, we use
bounding boxes provided in ImageNet as a proxy of the ob-
ject regions and compute the percentage of the pixels lo-
cated inside the bounding box over the total pixel numbers
in the whole explanation. Specifically, for set I of all pixels
in the input image and set D of all pixels in the bounding
box, we define the explanation precision as Precisionl =

∑
i∈D al

i∑
i∈I al

i

, where category l ∈ L and ali ∈ [0, 1] is the value

of pixel i in Āl, which is attention map A resized to the same
size as the input image by bilinear interpolation. We com-
pute this metric on the visualization results of the GT cate-
gory for positive explanations and on the least similar class
(LSC) (using Eq. 11) for negative explanations, as LSC im-
ages usually show strong and consistent negative explana-
tions. This precision metric actually is a generalization of
the pointing game [47], which counts one hit when the point
with the largest value on the heat map locates in the bound-
ing box and the final score is calculated as #Hits

#Hits+#Misses .
We also adopt several other metrics, i.e., (i) insertion area

under curve (IAUC) [27], which measures the accuracy gain
of a model when gradually adding pixels according to their
importance given in the explanation (heat map) to a synthe-
sized input image; (ii) deletion area under curve (DAUC)
[27], which measures the performance drop when gradu-
ally removing important pixels from the input image; (iii)
infidelity [44], which measures the degree to which the ex-
planation captures how the prediction changes in response
to input perturbations; and (iv) sensitivity [44], which mea-
sures the degree to which the explanation is affected by the
input perturbations. In addition, we calculate the (v) overall
size of the explanation areas by Areal =

∑
i∈I a

l
i, as for

some applications, a smaller value is better to pinpoint the
supports to differentiate one class from the others.

We conduct the explainability experiments with the Im-
ageNet subset with the first 100 classes. We train seven
models with (1) an FC classifier, (2)–(4) SCOUTER+ (λ =
1, 3, 10), and (5)–(7) SCOUTER− (λ = 1, 3, 10) using
ResNeSt 26 [46] as the backbone. The results of competing
methods are obtained from the FC classifier-based model.
In addition, as introduced in Section 2.1, some of the ex-
isting works can give negative explanations. Therefore, we
also implement and compare our results with their negative
variants by using negative feature maps/gradients or modi-
fying their objective functions.

The numerical results are shown in Table 1. We can
see that SCOUTER can generate explanations with dif-
ferent area sizes while achieving good scores in all met-
rics. These results demonstrate that the visualization by
SCOUTER is preferable in terms of controlling area sizes,
high precision, insensitive to noises (sensitivity), and with
good explainability (infidelity, IAUC, and DAUC). Among
the competing methods, extremal perturbation [10], I-GOS
[28], and IBA [30] also take the size of support regions into
account, and thus some of them give smaller explanatory
regions. Extremal perturbation’s explanatory regions cover
some parts of foreground objects. This leads to a high pre-
cision score, but the performance over other metrics is not
satisfactory. I-GOS and IBA give small explanation areas.
I-GOS results in low IAUC and sensitivity scores. IBA gets
relatively low scores of IAUC and DAUC, which means its



Table 1. Evaluation of the explanations. Positive explanations are from the GT class, while negative is from the least similar class (LSC).
Methods Year Type Area Size Precision ↑ IAUC ↑ DAUC ↓ Infidelity ↓ Sensitivity ↓

Positive

CAM [49] 2016 Back-Prop 0.0835 0.7751 0.7185 0.5014 0.1037 0.1123
GradCAM [31] 2017 Back-Prop 0.0838 0.7758 0.7187 0.5015 0.1038 0.0739
GradCAM++ [3] 2018 Back-Prop 0.0836 0.7861 0.7306 0.4779 0.1036 0.0807
S-GradCAM++ [25] 2019 Back-Prop 0.0868 0.7983 0.6991 0.4896 0.1548 0.0812
Score-CAM [36] 2020 Back-Prop 0.0818 0.7714 0.7213 0.5247 0.1035 0.0900
SS-CAM [35] 2020 Back-Prop 0.1062 0.7902 0.7143 0.4570 0.1109 0.1183
⌞ w/ threshold 2020 Back-Prop 0.0496 0.8243 0.6010 0.7781 0.1079 0.0790

RISE [27] 2018 Perturbation 0.3346 0.5566 0.6913 0.4903 0.1199 0.1548
Extremal Perturbation [10] 2019 Perturbation 0.1458 0.8944 0.7121 0.5213 0.1042 0.2097
I-GOS [28] 2020 Perturbation 0.0505 0.8471 0.6838 0.3019 0.1106 0.6099
IBA [30] 2020 Perturbation 0.0609 0.8019 0.6688 0.5044 0.1039 0.0894
SCOUTER+ (λ = 1) Intrinsic 0.1561 0.8493 0.7512 0.1753 0.0799 0.0796
SCOUTER+ (λ = 3) Intrinsic 0.0723 0.8488 0.7650 0.1423 0.0949 0.0608
SCOUTER+ (λ = 10) Intrinsic 0.0476 0.9257 0.7647 0.2713 0.0840 0.1150

Negative

CAM [49] 2016 Back-Prop 0.1876 0.3838 0.6069 0.6584 0.1070 0.0617
GradCAM [31] 2017 Back-Prop 0.0988 0.6543 0.6289 0.7281 0.1060 0.5493
GradCAM++ [3] 2018 Back-Prop 0.0879 0.6280 0.6163 0.6017 0.1047 0.3114
S-GradCAM++ [25] 2019 Back-Prop 0.1123 0.6477 0.6036 0.5430 0.1071 0.0590
RISE [27] 2018 Perturbation 0.4589 0.4490 0.4504 0.7078 0.1064 0.0607
Extremal Perturbation [10] 2019 Perturbation 0.1468 0.6390 0.2089 0.7626 0.1068 0.8733
SCOUTER− (λ = 1) Intrinsic 0.0643 0.8238 0.7343 0.1969 0.0046 0.0567
SCOUTER− (λ = 3) Intrinsic 0.0545 0.8937 0.6958 0.4286 0.0196 0.1497
SCOUTER− (λ = 10) Intrinsic 0.0217 0.8101 0.6730 0.7333 0.0014 0.1895

Table 2. Area sizes of the explanations (λ = 10).

Methods Target Classes
GT Highly-similar Similar Dissimilar

SCOUTER+ 0.0476 0.0259 0.0093 0.0039
SCOUTER− 0.0097 0.0141 0.0185 0.0204

explanations cannot give correct attention to the pixels and
thus does not have enough explainability.

It is arguable that area size can be controlled by thresh-
olding the heatmap. In order to verify this, we set a thresh-
old (a ≥ 0.2) to one of the back-propagation-based meth-
ods (SS-CAM) to get explanations with smaller size. We
can see that this variant suffers a deterioration in IAUC
and DAUC (significantly worse than I-GOS, IBA, and
SCOUTER), which represents a large explainability drop
and hampers its uses in actual applications requiring small
explanations.

To further explore the explanation for non-GT cate-
gories, we define the semantic similarity between categories
based on [41], which uses WordNet, as

Similarity = 2
d(LCS(l, l′))

d(l) + d(l′)
, (11)

where d(·) gives the depth of category l in WordNet, and
LCS(l, l′) is to find the least common subsumer of two ar-
bitrary categories l and l′. We define the highly-similar
categories as the category pairs with a similarity score no
less than 0.9, similar categories as with a score in [0.7, 0.9),
and the remaining categories are regarded as dissimilar cat-

egories. Table 2 summarizes the area sizes of the explana-
tory regions for GT, highly-similar, similar, and dissimilar
categories. We see a clear trend: SCOUTER+ decreases the
area size when the inter-category similarity becomes lower,
while SCOUTER− gives larger explanatory regions for the
dissimilar categories.

Some visualization results are given in Figs. 3 and 4. It
can be seen that SCOUTER gives reasonable and accurate
explanations. Comparing SCOUTER+’s explanation with
SS-CAM [36], and IBA [30], we find that SCOUTER+ can
give explanations with more flexible shapes which fit the
target objects better. For example, in the first row of Fig. 3,
SCOUTER+ gives more accurate attention around the neck.
In the second row, it accurately finds the individual entities.
Compared with SS-CAM, IBA shows smaller explanatory
regions. However, IBA is less precise and less reasonable,
which is consistent with the numerical results in Table 1.

In Fig. 4, SCOUTER− can also find the negative sup-
ports, e.g., the wattle of the hen, and the hammerhead and
the fin of the shark. In addition, although the negative vari-
ation of S-GradCAM++ performs well on the first row, its
explanation in the second row does not well fit the object’s
shape and fails to pinpoint the key difference (the head).

4.3. Classification Performance

We compare SCOUTER and FC classifiers with several
commonly used backbone networks with respect to the clas-
sification accuracy. The results are summarized in Fig. 5.
With the increase of the category number, both the FC clas-
sifier and SCOUTER show a performance drop. They show
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Figure 3. Visualized positive explanations using SCOUTER+ and existing methods. The numbers in the parentheses are the λ values used
in the SCOUTER training.

Input
(a) Why this (“hen”) is not “cock”?

SCOUTER(3) SCOUTER(5) S-GradCAM++

Input
(b) Why this (“hammerhead shark”) is not “tiger shark”?

SCOUTER(3) SCOUTER(5) S-GradCAM++

Figure 4. Visualized negative explanations using SCOUTER− and
an existing method. The numbers in the parentheses are the λ
values used in the SCOUTER training.

similar trends with respect to the category number.
The relationship between λ, which controls the size

of explanatory regions, and the classification accuracy is
shown in Fig. 6 for ResNeSt 26 model with n = 100. A
clear pattern is that the area sizes of both SCOUTER+ and
SCOUTER− drop quickly with the increase of λ. However,
there is no significant trend in the classification accuracy,
which should be because the cross-entropy loss term works
well regardless of λ.

Also, according to the visualization results in Figs. 3 and
4, a larger λ does not simply decrease the explanatory re-
gions’ sizes. Instead, SCOUTER shifts its focus from some
larger supports to fewer, smaller yet also decisive supports.
For example, in the first row of Fig. 4, when λ is small,
SCOUTER− can easily make a decision that the input im-
age is not a cock because of unique feathers on the neck.
With a larger λ, SCOUTER finds smaller combinations of
supports (i.e., its wattle) and thus the explanation changes
from the (larger) neck to the (smaller) wattle region.

We also summarize the classification performance of the
FC classifier, SCOUTER+ (λ = 10), and SCOUTER−
(λ = 10) over ImageNet [6], Con-text [20], and CUB-200

[39] datasets in Table 3. The subsets with n = 100 are
adopted for ImageNet and CUB-200, while all 30 categories
are used for the Con-text. The results show that SCOUTER
can be generalized to different domains and has a compa-
rable performance with the FC classifier over all datasets.
Also, SCOUTER’s number of parameters is comparable to
FC’s (more details in supplementary material).

One drawback of SCOUTER is that its training is unsta-
ble when n > 100. This is possibly because of the increas-
ing difficulty in finding effective supports that consistently
appear in all images of the same category but are not shared
by other categories. This drawback limits the application of
SCOUTER to small- or medium-sized datasets.

4.4. Case Study

SCOUTER uses the area loss, which constrains the size
of support. This constraint can benefit some applications,
including the classification of medical images, since small
support regions can precisely show the symptoms and are
more informative in some cases. Also, there was no method
that could give the negative explanation but it is actu-
ally needed (doctors need reasons to deny some diseases).
SCOUTER was designed upon these needs and is being
tested in hospitals for glaucoma (Fig. 7), artery hardening
(supplementary material), etc.

For glaucoma diagnosis, we tested SCOUTER with λ =
10 over a publicly available dataset, i.e., ACRIMA [9],
which has two categories (normal and glaucoma). ResNeSt
26 is used as backbone. The results are shown in Table
4. We can see that both SCOUTER+ and SCOUTER−
get better performances than the FC classifier. Besides,
SCOUTER is preferred in this task as doctors are eager to
know the precise regions in the optic disc that lead to the
machine diagnosis. We can see that, in the visualization
results in Fig. 7, SCOUTER shows more precise and rea-
sonable explanations that locate on some vessels in the op-
tic disc and show clinical meanings (vessel shape change
due to the enlarged optic cup), which are verified by doc-
tors. Although IBA also gives small regions, they cover
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Figure 6. Relationships between λ and explanation area sizes and
between λ and classification accuracy for the GT (SCOUTER+,
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Table 3. Classification accuracy on various datasets.
Models ImageNet Con-text CUB-200

ResNeSt 26 (FC) 0.8080 0.6732 0.7538
ResNeSt 26 (SCOUTER+) 0.7991 0.6870 0.7362
ResNeSt 26 (SCOUTER−) 0.7946 0.6866 0.7490

ResNeSt 50 (FC) 0.8158 0.6918 0.7739
ResNeSt 50 (SCOUTER+) 0.8242 0.6943 0.7397
ResNeSt 50 (SCOUTER−) 0.8066 0.6922 0.7600

ResNeSt 101 (FC) 0.8255 0.7038 0.7804
ResNeSt 101 (SCOUTER+) 0.8251 0.7131 0.7428
ResNeSt 101 (SCOUTER−) 0.8267 0.7062 0.7643

some unrelated or uninformative locations. In addition, it
is notable that the facts to admit category “Glaucoma” need
not to match with the facts to deny “Normal”, as they are
only subsets of the support sets and an on-purpose negative
explanation is especially helpful for the doctors when the
machine decisions are against their expectations.

5. Conclusion
An explainable classifier is proposed in this paper, with

two variants, i.e., SCOUTER+ and SCOUTER−, which

Input GradCAM SS-CAM IBA

Why is N. Why is G. Why is not N. Why is not G.
Figure 7. Explanations for a positive sample in the glaucoma diag-
nosis dataset. Bottom row is from SCOUTER +/- for normal (N.)
and glaucoma (G.).

Table 4. Classification Performance on ACRIMA Dataset [9].
Methods AUC Acc. Prec. Rec. F1 Kappa

FC 0.9997 0.9857 0.9915 0.9831 0.9872 0.9710
SCOUTER+ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SCOUTER− 0.9999 0.9952 1.0000 0.9915 0.9957 0.9903

can respectively give positive or negative explanation of
the classification process. SCOUTER adopts an explain-
able variant of the slot attention, namely, xSlot attention,
which is also based on the self-attention. Moreover, a loss is
designed to control the size of explanatory regions. Exper-
imental results prove that SCOUTER can give accurate ex-
planations while keeping good classification performance.
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SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition
(Supplementary Material)

1. Computational Costs
Table 1 gives the cost comparison of SCOUTER and FC

classifier. We can see that, compared with the FC classifier,
SCOUTER requires a similar computational cost (slightly
higher) and a similar number of parameters (slightly lower).
The increase in the computational cost (flops) is because the
xSlot module has some small FC layers (i.e., Q and K),
GRU, and some matrix calculations. However, as shown in
the lower part of Fig. 1, this is not very significant.

On the other hand, as shown in the upper part of Fig. 1,
SCOUTER has more parameters than the FC classifier
when n is roughly in [0, 90]. This is because the FC layers
and GRU, which are shared among all slots, have a certain
number of parameters. For n > 90, SCOUTER uses fewer
parameters than the FC classifier because there are only c′

(64 in our implementation) learnable parameters for each
category. This is much less than the parameter size of the
FC classifier, which usually needs much more parameters
per class (2, 048 parameters for ResNet 50).

Comparing to the differences in the computation costs
and the numbers of parameters of different backbone mod-
els, the additional cost of SCOUTER is almost negligible.

2. Components of xSlot Attention Module
In SCOUTER, we adopt a variant of the slot attention

[23]. We make some essential modifications to several com-
ponents in order to enable explainable classification, while
other components, i.e. the gated recurrent unit (GRU) and
position embedding (PE), remain unchanged, whose effects
on the classification as well as the explainability are un-
explored. To test the performance of the SCOUTER with
and without these components, we consider two variants of
SCOUTER. The first one is the SCOUTER without GRU,
in which we replace the GRU component, which is used to
update slot weights, with an average operation. The second
variant is the SCOUTER without PE, where flattened input
features are directly used without adding position informa-
tion.

In Table 2, we show the performances of SCOUTER+

and SCOUTER− as well as their variants in several perfor-

Table 1. Cost comparison of SCOUTER and FC classifier (n =
100 and input images are with the size of 260× 260).

Models Params (M) Flops (G)
FC SCOUTER FC SCOUTER

ResNet 26 [14] 14.1511 14.1298 3.4238 3.4565
ResNet 50 [14] 23.7129 23.6916 5.9830 6.0171

ResNeSt 26 [46] 15.2253 15.2041 5.1803 5.2130
ResNeSt 50 [46] 25.6391 25.6179 7.7430 7.7762

DenseNet 121 [19] 7.0564 7.0719 3.7536 3.7805
DenseNet 169 [19] 12.6510 12.6435 4.4396 4.4683
MobileNet 75 [17] 1.1194 0.6537 0.0563 0.0812
MobileNet 100 [17] 4.3301 3.0859 0.3154 0.3421
SeResNet 18 [18] 11.3169 11.3509 2.6473 2.6726
SeResNet 50 [18] 26.2439 26.2226 5.6758 5.7098

EfficientNet B2 [33] 7.8419 7.8437 1.0250 1.0564
EfficientNet B5 [33] 28.5457 28.5244 3.6391 3.6721
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Figure 1. Flops and parameter sizes of SCOUTER and FC classi-
fier with ResNet 50.

mance metrics including computation costs, classification
accuracy, and explainability. We can see that SCOUTER
with all the components gets better results in most metrics
than the variants, except for computation costs. The absence
of GRU or PE not only causes a decrease of the classifica-
tion accuracy, but also some deterioration on all explain-
ability metrics, which proves their necessity.



Table 2. Performance comparison of SCOUTER and its variants on a subset (n = 100) of the ImageNet dataset. λ is set to 10 during
training and ResNeSt 26 is adopted as the backbone. The explanation performance is measured on the GT category for the positive
explanation and on the least similar class (LSC) for the negative explanation.

Explanation Type Variants Computational Costs Classification Explainability
Params (M) Flops (G) Accuracy Precision IAUC DAUC

Positive
SCOUTER+ 15.2041 5.2130 0.7991 0.9257 0.7647 0.2713

w.o. GRU 15.1791 5.1901 0.7961 0.9219 0.7456 0.2866
w.o. PE 15.2041 5.2130 0.7974 0.8973 0.7557 0.3002

Negative
SCOUTER− 15.2041 5.2130 0.7946 0.8101 0.6730 0.7333

w.o. GRU 15.1791 5.1901 0.7910 0.7904 0.5959 0.7529
w.o. PE 15.2041 5.2130 0.7903 0.8067 0.6141 0.7661
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Figure 2. The classification performance of FC classifier,
SCOUTER+, and SCOUTER− when 2 ≤ n ≤ 1000. We show
the violin plots as well as the average value for SCOUTER+ and
SCOUTER−, while the FC classifier is only with the average
value.

3. Classification Performance when n > 100

Training of SCOUTER becomes unstable when the cat-
egory number n of the ImageNet [6] subsets is larger than
100. One possible reason is that it is difficult to find consis-
tent and discriminative supports when there are many cat-
egories. Fig. 2 shows the classification performance when
n > 100. The number of independent runs of training is
increased to 5 as the training process becomes unstable and
often results in failures (low classification accuracy) when
n > 100. λ is set to 10. ResNeSt 26 [46] is adopted as the
backbone, with batch size of 70 and training epoch num-
ber of 20 (both are same as the settings of the experiments
in the main paper). We can see that, although sometimes
SCOUTER+ and SCOUTER− can achieve similar perfor-
mance with the FC classifier when n < 400, they become
significantly unstable with the increase of category number
n. As stated in the main paper, SCOUTER can only be used
in small-or medium-sized datasets due to this issue.

4. Inter-and Intra-Category Explanation
To better understand (i) what supports SCOUTER uses

as the basis for its decision making, (ii) how these sup-

ports can be differentiated among different categories, and
(iii) whether they are being consistent for images in the
same category, we give some additional visualization on the
MNIST dataset [22] in Figs. 3 and 4 for SCOUTER+ and
SCOUTER−, respectively. MNIST is adopted here as simi-
larities and dissimilarities among categories (digits) are ob-
vious and are easier to understand than ImageNet. In these
two figures, (a) is for the inter-category visualization, which
shows what the supports for the “Predicted” category look
like given the image of the “Actual” category. Whereas, (b)
is for intra-category visualization, which shows the support
for different images of the same category. For the latter, we
use the digit 6 as an example and the first ten samples of
category 6 in the test set of MNIST are used.

In the inter-category visualization in Fig. 3, we can see
that SCOUTER+ successfully finds supports for the im-
ages of ground-truth (GT) categories. Notably, it also finds
weaker supports for some categories with similar appear-
ances, e.g., the supports for the prediction of “why 5 is 6”
(as the lower half of this hand-wrote 5 digit is a little con-
fusing and is very close to the lower part of 6), as well as
the prediction of “why 0 is 9” and “why 8 is 9” (both 0 and
8 have a circle like the one in 9).

Similarly, in Fig. 4, we can see that SCOUTER− finds no
supports for the images of the GT categories, while it finds
strong supports for the non-GT categories. As digit recogni-
tion is an easy task, SCOUTER− can use some very simple
supports to deny most non-GT categories. For example, in
the prediction of “why 1 is not [non-GT categories]”, all
the slots of SCOUTER− find that the top end of the vertical
stroke is 1’s unique pattern, thus, they can deny all other
categories with this support. Among some visually similar
categories, the negative explanations are more informative.
For example, in the visualization of “why 9 is not 1” and
“why 9 is not 7”, SCOUTER− precisely highlights the dis-
criminative regions, without which 9will look like the other
two digits.

Also, in intra-category visualization, both SCOUTER+

and SCOUTER− show consistent supports for the images
of the same category. When predicting “why 6 is 6”,
SCOUTER+ always looks at the region close to the cross-



ing point of the bottom circle and vertical stroke. For expla-
nation “why 6 is not 2”, SCOUTER− always recognizes
the presence of vertical stroke, which does not exist in the
digit 2, as well as the missing of the bottom horizon stroke,
which is essential for 2.

5. Some More Visualizations
In this section, we show more visualization results for

ImageNet using SCOUTER and competing methods, in-
cluding I-GOS [28], IBA [30], CAM [49], GradCAM [31],
GradCAM++ [3], S-GradCAM++ [25], Score-CAM [36],
SS-CAM [35], and Extremal Perturbation [10].

Subsets with n = 100 categories are used for training
and visualization. Besides the first n categories (as used in
the main paper), we also use several other subsets (with the
same category number) in the ImageNet dataset, in order
to provide visualizations with more diversity. Figs. 5 and 6
give examples of the positive explanation, while Fig. 7 gives
examples of the negative explanation.

Among the positive explanations, we can see that
SCOUTER+ can find reasonable and precise sup-
ports. Especially for the image of “parallel bars”,
SCOUTER+ can provide an explanatory region along the
horizon bar. In addition, SCOUTER− with the least similar
class (LSC) also finds supports on the foreground objects,
which can be used to deny the LSC categories but are not
enough for admitting the GT category, which conforms the
quantitative results in the main paper.

Moreover, as shown in Fig. 7, SCOUTER− can give
very detailed explanations when different categories with
high visual similarities, e.g., the differences in the eyes and
ears between “Labrador retriever” and “golden
retriever”, and the differences of the horn between
“water ox” and “ox”.

Figs. 8 and 9 show some more examples of two medi-
cal applications (glaucoma diagnosis and artery hardening
diagnosis). We can see that SCOUTER+ and SCOUTER−
perform well in both tasks.
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(a) Explanation Confusion Matrix: why SCOUTER+ predicts the images of [Actual Category] are [Predicted Category]

(b) Explanation Consistency: why SCOUTER+ predicts the images of a same category (“6”) are “6”
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Figure 3. Visualized positive explanations using SCOUTER+ (with ResNet 18 [14] and λ = 1) on the MNIST dataset [22].
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(a) Explanation Confusion Matrix: why SCOUTER- not predicts the images of [Actual Category] are [Predicted Category]

(b) Explanation Consistency: why SCOUTER- predicts the images of a same category (“6”) are not “2”
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Figure 4. Visualized negative explanations using SCOUTER− (with ResNet 18 [14] and λ = 1) on the MNIST dataset [22].
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Figure 5. More examples of visualized positive explanations (Part 1). The number in parentheses represents the λ value used in the
SCOUTER training.
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Figure 6. More examples of visualized positive explanations (Part 2). The number in parentheses represents the λ value used in the
SCOUTER training.



Input SCOUTER-(0.5) SCOUTER-(1) SCOUTER-(2) SCOUTER-(3) Example Image of
the Wrong Class

Why this (an image of “water ox”) is not an image of “ox”?

Why this (an image of “baseball”) is not an image of “basketball”?

Why this (an image of “black and gold garden spider”) is not an image of “barn spider”?

Why this (an image of “warthog”) is not an image of “wild boar”?

Why this (an image of “chimpanzee”) is not an image of “gorilla”?

Why this (an image of “Labrador retriever”) is not an image of “golden retriever”?

Figure 7. More examples of visualized negative explanations for similar categories. The number in parentheses represents the λ value used
in the SCOUTER training.
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Figure 8. More examples of visualized explanations for glaucoma diagnosis on three positive samples using SS-CAM, IBA, SCOUTER+,
and SCOUTER−. The first three methods are for “why this is glaucoma” while SCOUTER− is for “why this is not normal”.
SCOUTER shows explanations covering only related regions (vessel shape changes), which have been validated by two doctors.
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Figure 9. More examples of visualized explanations for artery hardening diagnosis on three “moderate” samples using SS-CAM, IBA,
SCOUTER+, and SCOUTER−. The first three methods are for “why this is moderate” while SCOUTER− is for “why this is not none”.
The white circles give the approximate location of the symptoms (shape changes on the vessel wall of the vein, which are caused by the
increased blood pressure in the artery). SCOUTER gives precise explanations which are mostly within the symptom region and precisely
on the wall of the vein. The explanations of SS-CAM are off the target in the first row and on the wrong vessels (artery) in the first and the
third rows while IBA fails to find the symptom in the second and the third rows.


