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Figure 1. IterNet analyzes the vessel network in a retinal image for fine segmentation. The first row is the whole image and
the second row is an enlarged image of an area near the bright spot. Red color means a high possibility for a pixel to be
part of the vessel while blue color represents a low possibility. We can see that IterNet well handles incomplete details in the
retinal image and infers the possible location of the vessels. (a) An example image from the DRIVE dataset, (b) The gold
standard, (c) UNet (AUC: 0.9752), (d) Deform UNet (AUC: 0.9778) and (e) IterNet (AUC: 0.9816).

Abstract
Retinal vessel segmentation is of great interest for di-

agnosis of retinal vascular diseases. To further improve
the performance of vessel segmentation, we propose Iter-
Net, a new model based on UNet [1], with the ability to
find obscured details of the vessel from the segmented ves-
sel image itself, rather than the raw input image. Iter-
Net consists of multiple iterations of a mini-UNet, which
can be 4× deeper than the common UNet. IterNet also
adopts the weight-sharing and skip-connection features to
facilitate training; therefore, even with such a large ar-
chitecture, IterNet can still learn from merely 10∼20 la-
beled images, without pre-training or any prior knowledge.
IterNet achieves AUCs of 0.9816, 0.9851, and 0.9881 on
three mainstream datasets, namely DRIVE, CHASE-DB1,

and STARE, respectively, which currently are the best scores
in the literature. The source code is available1.

1. Introduction

Retinal examination serve as an important diagnostic
modality in finding retinal diseases as well as systemic dis-
eases, such as high blood pressure, arteriolosclerosis, and
diabetic retinopathy, a microvascular complications of di-
abetes. In fact, it is the only feasible way for the doctors
to inspect the blood vessel system in the human body in
vivo. It has been used as a routine examination not only by
ophthalmologists but also many other specialists [2]. Reti-
nal examination is non-invasive and economical to perform,

1Source code: https://github.com/conscienceli/IterNet



and it has been widely conducted all over the world. How-
ever, at the same time, there will be a huge gap between
the needs and the capacity of handling the ever-increasing
retinal images by ophthalmologists. Computer-aided diag-
nosis will be an obvious solution in this scenario, and vessel
segmentation is the essential basis of following analysis.

One major difficulty in the vessel segmentation task is
that vessels have no significant differences in appearance
from the background, especially for the micro vessels in
noisy images. It is challenging to find every vessel while
not introducing too many false positives. Actually, things
will be more complicated if we consider the problem of
photo imaging quality. Much essential information may be
lost due to improper illumination, sensor noises, etc. In this
case, it is indeed impossible for segmentation models to find
a complete yet accurate vessel network. For example, in
Fig. 1(a), because of the optic disk (brighter spot) in the im-
age, segmentation results suffer from severe deterioration
around its boundary: Some pixels have been “lost” in the
large gap in luminance.

Figure 1(b) is the gold standard marked by human ex-
perts, who can do this because they know vessels should
be lines/curves, which should be connected to each other
to form a network. In other words, this structural redun-
dancy enables the experts to interpolate vessels in obscured
regions in retinal images. Deep learning models may also
be capable of learning this kind of knowledge if they are ex-
posed to a large amount of perfectly labeled data, which are
extremely limited in the retinal image segmentation field. In
fact, there are no more than 20 images for training in pub-
licly available datasets, i.e., DRIVE [3], CHASE-DB1 [4],
and STARE [5].

Existing approaches struggle with this scarceness of
data. As shown in Figs. 1(c) and (d), the two state-of-the-art
models with top performance, namely UNet [1] and Deform
UNet [6], face noticeable errors in their prediction. They ei-
ther mix up the vessel and the boundary of optic disk or fail
to detect vessels around their intersection, leading to e.g.,
segmentation in which a single vessel is split into two un-
connected parts. This is a common phenomenon in medical
image segmentation and can lead to a defective vessel map
consisting of a set of disconnected or broken up segments.
This issue makes it very difficult to analyze the blood ves-
sel condition by doctors or standard imaging methodologies
using the segmented images [7]. Therefore, connectivity is
also an important problem for retina segmentation.

One interesting observation in Figs. 1(c) and (d) is that
humans may still be able to infer where the actual vessels
are from these resulting vessel maps. This is because, like
the experts, we can also make use of structural redundancy;
we can guess that two parts in predicted vessels are con-
nected if their edges are close and pointing to each other.
This may also apply to deep learning models. Although it

is hard for deep learning models to directly overcome the
problem of missing or extra predictions, it may be possi-
ble to let them know which segmented vessel is false and
which is not. Consequently, they may be able to learn how
to fix errors in segmentation results. Based on this obser-
vation, we design a new UNet-based model, coined IterNet,
which can well utilize the structural redundancy in the ves-
sel system. The resulting vessel map by IterNet is shown in
Fig. 1(e), which gives precise segmentation of the vessels
and almost avoid the interference around the optical disk.

The key idea is to shift the focus of the deep learning
model from dealing with every pixel in raw input images
to the whole vessel network system. More specifically, we
build a model that refines imprecise vessel segmentation re-
sults to more precise ones, but not directly maps raw input
images to precise segmentation results. In order to let the
model learn sufficient knowledge of what real vessel net-
works and ones with failure in segmentation results look
like, it is essential to provide them with enough training
samples. However, again, there are no datasets available
for this sake as mentioned above.

One feasible way is to use the outputs of a certain seg-
mentation model, which actually is vessel maps, like the
ones in Figs. 1(c) and (d), as inputs to the model dedicated
for refinement. We implement this by adding some refinery
modules (mini-UNets) after a base module (UNet) for initial
segmentation, as shown in Fig. 2. The input of each refinery
module is the output of the second last layer of its preceding
module. Each module has an output of vessel segmentation,
which has a respective loss function. In training, the base
module will consistently adjust its parameters to improve its
own output. Therefore, the first refinery module will get vir-
tually different inputs, even with a fixed number of training
samples. This applies to other refinery modules as well. In
this process, the refinery modules can be exposed to a large
number of false vessel patterns and thus can learn how to fix
them because they are all bound to the correct labels. The
number of refinery modules is a hyperparameter to be tuned
according to the number of training samples, GPU capac-
ities, and training time. The output from the last module,
“Out N” in Fig. 2, will be the actual output in prediction
and all other outputs are only used for training. In addition,
to avoid the overfitting problem and to improve the training
efficiency, we design IterNet with the weight-sharing fea-
ture and a skip-connection structure.

The main contributions of our work are as follows.
• A vessel segmentation model with top performance

over all mainstream datasets.
• An iterative design of neural network architecture to

learn the nature of vessels, with avoiding overfitting
by weight-sharing.
• Drastically improved connectivity of segmentation re-

sults.
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Figure 2. The structure of IterNet, which consists of one UNet and iteration of N − 1 mini-UNets.

2. Related Work
Image segmentation: Currently, most state-of-the-art
models [8, 9, 10] for semantic segmentation stem from a
fully-convolutional design, which is first introduced by the
fully convolutional network (FCN) [11]. The main idea
is to encode the raw images into a feature space and con-
vert feature vectors into segmented images in an end-to-end
manner. FCN has innovated many iterative segmentation
approaches, which have similar ideas with our IterNet, but
with totally different implementations. For example, the it-
erated interactive model [12] runs the FCN model several
times and takes the users’ feedback to add more accurate
training labels during each iteration. Drozdzal’s model uses
FCN to preprocess input images into a normalized version
and then applies a fully convolutional ResNet for iteratively
refining the segmented images [13]. UNet [1] is another
well-known fully-convolutional model. Unlike FCN, UNet
has multiple decoding layers to upsample the features. It
also adds some skip-connections to allow decoding layers
to use the features from the encoding process.

Retinal image segmentation: The traditional way to con-
duct blood vessel segmentation is to utilize the local infor-
mation, such as image intensity, or some hand-crafted fea-
tures to perform classification. One earliest attempt is to use
thresholding and masking. Roychowdhury et al. [14] intro-
duced an iterative segmentation method. Several processes
in the segmentation algorithm run multiple times, which is
very similar to our IterNet. Their method literately looks
for the possible vessel pixels by adaptive thresholding on a
retinal image, which is masked with the segmentation result
obtained from the last iteration.

The emergence of UNet [1] leads to a new era of im-

age segmentation in the medical domain, and has revolu-
tionized most image segmentation tasks in relevant domain
[15, 16, 17, 18, 19]. Kim et al. [20] adopted the concept of
iterative learning in an UNet-like model. Being similar to
IterNet, their model also uses the last output as the next
input. The main difference from ours is that they simply
run one same model for multiple times. The encoding and
decoding modules still need to deal with both raw retinal
images and vessel segmentation results. In contrast, Iter-
Net is one single model with iterated mini-UNets, which
completely separates raw image input and segmentation re-
sult input. This is the key design concept of IterNet, boost-
ing the state-of-the-art performance. Another recent model
[21, 22], named DenseBlock-UNet transforms the convolu-
tional modules in the common UNet model into the dense
block introduced in [23]. The dense block can improve
UNet in some aspects, like alleviating the gradient vanish-
ing, strong feature propagation, enabling feature reuse, and
decreasing the whole parameter size. Deform-UNet [6] is
another encouraging model. The authors modified the UNet
model for better performance. They applied two key mod-
ules from the deform convolutional networks [24], namely
deformable convolution and deformable RoI pooling, which
replace the original modules in standard convolutional neu-
ral network (CNN) models and empower them with the abil-
ity to dynamically adjust their receptive fields according to
the actual objects in input images.

One of the main differences between IterNet and other
UNet-based models is that our focus is not on modifying
the structure of UNet; we think the feature extraction ability
of UNet is enough for the vessel segmentation task. We are
instead trying to make a better use of well-extracted features
from the UNet model to infer missing pieces in them.



3. IterNet
Based on the observation mentioned in Section 1, we de-

sign our model to learn what the human blood vessel system
in retinal images looks like to exploit its structural redun-
dancy. The network is designed by keeping human anno-
tators in mind. That is, an annotator may segment a raw
retinal image in several stages: The first stage is to make
a rough segmentation map. In the following stages, they
keep improving the map with the help of raw retinal im-
age and previous vessel map until the annotator is satis-
fied with the resulting vessel map. This leads to the idea
of using resulting vessel maps (as in Fig. 1(c)) from a base
module as an input to a refinery module that learns to cor-
rect it. With this architecture, the refinery module can infer
missing/extra predictions based on the structure of the ves-
sel system. In order to complete correction, we can apply
the refinery module iteratively as shown in Fig. 2.

More specifically, our network consists of two slightly
different architectures: One is UNet, and the other is a sim-
plified version of UNet, referred to as mini-UNet. We use
UNet as our base module because of its superior perfor-
mance in various segmentation tasks, especially in the med-
ical applications. The output of UNet is the one-channel
map of the probabilities of pixels being on a vessels. The
refinery modules’ architecture is mini-UNet, and they use
the output of the second last layer of its precedent module,
which is a 32-channel feature map and thus can have more
information, compared with the one-channel vessel prob-
ability map. The mini-UNet actually is a light-weight ver-
sion of the UNet architecture with fewer parameters because
the input to the refinery modules is a feature map that we
consider is simpler than the raw retinal images with all the
background and noises. In addition, we conduct an exper-
iment to test the performance when replacing mini-UNets
with full-size UNets, and the results get worse on all three
datasets (Refer to the supplementary material for detailed
results).

As we can see in Fig. 1(c), the mapping from original
retinal images to vessel maps is mostly learnt by the base
module, and the refinery modules are responsible only for
small parts of the vessels (e.g., thin vessels). Hence, Iter-
Net achieves good segmentation results if we have enough
samples to train the refinery modules. In our architecture,
all refinery modules (the modules marked in blue in Fig. 2)
share the same weights and biases. The input of first refin-
ery module is the feature map from the second last layer of
the base module, and the rest refinery modules follow the
similar procedure. Essentially, this can be interpreted as the
same module running for multiple times in a single forward
path. The most obvious benefit is that they can have varying
inputs. The intermediate results of the vessel map always
changes after each refinery module as illustrated in Fig. 3.
As a result, the refinery modules are consistently exposed

(a) (b) (c)
Figure 3. The result of Out 1, 2, and 3 from IterNet. The corre-
sponding AUCs are 0.9793, 0.9812, and 0.9815, respectively.

to new patterns of failure in the vessel segmentation. This
architecture makes it possible to train the refinery modules
with only 20 training samples.

Another reason for this architecture is to use iterative
prediction, which can improve the segmentation perfor-
mance. We observe that one single model prefers to mod-
ify the results only by small differences, and the concept
of iterated prediction has been used in many existing meth-
ods [14, 20]. Even with the same segmentation model, iter-
ative applications can still get better results. Therefore, we
can say that iterative application of the same model allows
to refine the missing parts of the vessel network without ex-
plicitly modeling its structural redundancy. In Fig. 3, we
show the output from the base module and three outputs
from following three refinery modules. The fourth output is
shown in Fig. 1(e). We can see that, with the iterative pre-
dictions by the refinery modules, IterNet gradually connects
split micro vessels together.

One important issue is that our IterNet is a many-layered
feed-forward network. In general, upper-layers of a many-
layered network hardly have an access to the input (or the
features from layers close to the input layers), whereas it
can serve as an important reference for the mini-UNets to
see what the original vessels look like and make decisions
based on it. Even for human annotators, it is necessary to
check the specific area in the raw vessel images when re-
fining some extremely-fuzzy parts of the vessel network.
Therefore, we should enable the higher-layers to utilize the
features from the lower layers. In addition, deep learn-
ing models may suffer from the vanishing gradient problem
when they are deep. Hence IterNet demands paths from the
upper layers to lower layers for efficient back-propagation.

We therefore add some skip-connections to IterNet, sim-
ilar to common UNet. There are three kinds of skip-
connections in IterNet. The first one is the intra-module
connection to connect the encoding layers of each to the de-
coding layers. The second one is from the base UNet to all
refinery mini-UNets. This connection provides an access to



the feature from the first layer of the base UNet, which is
very close to the input retinal image. The feature is con-
catenated with the feature from the first layer of every mini-
UNet. The third one is the connections among the mini-
UNets, inspired by the dense connection of the dense net-
work [23]. The features from lower modules are concate-
nated with those from the upper modules. To keep the same
structure and for weights-sharing among the mini-UNets,
we add a 1× 1 convolutional layer, which is marked in yel-
low in Fig. 2, for dimensionality reduction. This is the only
component in the mini-UNets that has private parameters.

For training IterNet, we employ losses for each output
Out i. We use the sigmoid cross entropy, defined as:

Li = −yi log(pi)− (1− yi) log(1− pi), (1)

where yi represents the binary indicator (0 or 1) whether
the label is correct for the pixel i, and pi is the predicted
probability that the pixel i is a vessel pixel. Then they are
summed up with certain weights as:

L =
∑
i

wiLi (2)

where wi’s are set to 1 as we put no particular importance
to any output.

4. Implementation Details
4.1. Data Augmentation

As the number of training images is no more than 20
in publicly-available common datasets, some augmenta-
tion techniques are necessary to avoid overfitting. We at-
tempt to feed the IterNet model with all possible variations,
including color, shape, brightness, and position, to make
the model adapt to various imaging sensors, environments,
color ranges, etc. We use a training sample generator to
consistently produce randomly modified samples during the
training process.

4.2. Image patches in Training and Prediction

It is common to divide an input image into image patches
in the same size on a regular grid, which increase the num-
ber of available training samples. As IterNet has no require-
ment on the consistency of the input image sizes. There are
three different ways for training and prediction:
• Use image patches for training and testing, conquering

the resulting image patches together as the final result.
This strategy may make the best use of the training
material and gave the most refined prediction results.
However, it will cost much longer time than the other
two methods because inference process has to be con-
ducted for many times (see the supplementary material
for detailed time cost).

(a) (b) (c)
Figure 4. Raw images and masks from the dataset. (a) DRIVE. (b)
CHASE-DB1. (c) STARE.

• Use image patches only in training, and use the whole
image in prediction to directly get the final result. This
strategy can also use augmented training data. How-
ever, it may not perform as well as the first strategy
in prediction because the model is trained with image
patches.
• Use the original image in both training or prediction,

which is seldom adopted because the available retina
data are very limited; therefore, data augmentation
usually helps.

We employ image patch size of 128 pixels for training Iter-
Net to avoid overfitting. For prediction, we test both whole
image prediction and image patch prediction.

5. Experiments

In this section, we will give a detailed description of the
experimental design, the results, the comparisons, and dis-
cussion on advantages and shortcomings of IterNet. All the
experiments are performed on a GPU server, which has four
NVIDIA Tesla V100 SXM2 GPU with 32GB memory each,
and two Intel Xeon Gold 5122 CPU. For each model, we
only use one GPU for fair comparison. The number of the
iteration of the mini-UNet is set to three (N = 4 in Fig. 2),
as we find that, for these three datasets, larger numbers only
bring a minor improvement on the performance at the cost
of much longer training and prediction times.

We used three popular datasets, i.e., DRIVE [3],
CHASE-DB1 [4], and STARE [5], as shown in the first
row of Fig. 4, in our experiments. They are all in different
formats and different image sizes. The images are respec-
tively in .tif (565×584), .jpg (999×960), and .ppm
(700×605). We train three different IterNet models with
these three datasets. Because UNet does not require to fix
the size of input images, we can use the same model config-
uration for all the three models. Also the model can take as
input whole images or image patches. For training, we ran-
domly extracted image patches from the images. For pre-
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Figure 5. ROC Curves on Three Datasets (With Masks). (a) DRIVE. (b) CHASE-DB1. (c) STARE.

diction, overlapping image patches are extracted with the
stride of 3 (we compared the stride of 3 and of 8 in the sup-
plementary material), and we used the average of all over-
lapping image patches as the prediction.

The second row of Fig. 4 is the field of view (FoV) masks
of the retinal images. Although the DRIVE dataset provides
official masks for the test images, the other two datasets
do not have such masks. In order to assure fair compari-
son, we also generated the FoV masks for CHASE-DB1 and
STARE. This can be easily done by simple color threshold-
ing on the raw images because the pixels out of FoV are
usually close to black. In DRIVE dataset, we use 20 images
for training and 20 images for testing. In CHASE-DB1 and
STARE, there is no official description about training and
test splits, so we made 20 and 16 images, respectively, as
the training sets, and the remaining 8 and 4 images as the
test sets. We do not use any validation images.

We compared our models with some state-of-the-art
ones, including UNet [1], DenseBlock-UNet [21, 22], and
Deform-UNet [6]. We trained and evaluated these models
using their public code by ourselves on three datasets, be-
cause training and test splits are unknown for CHASE-DB1
and STARE and we want to produce the receiver operating
characteristics (ROC) curves, which are presented in Fig. 5.
As can be seen in the figure, in most cases, IterNet shows
better performance than the other three models. The per-
formance boost is small as all state-of-the-art models al-
ready have good performance (AUC > 0.97). Yet, the re-
sults proved that our model gave a stable performance over
all three datasets. Among them, IterNet worked well on the
STARE dataset, which has fewer training and test samples.
This result implies that the IterNet can find the proper fea-
tures and patterns in the vessel network even with limited
training images. In contrast, all other models suffer from a
big deterioration in the STARE dataset. Among the other
three state-of-the-art models, Deform-UNet usually showed
significantly better performance due to its dynamic recep-
tive field. However the STARE dataset decreased its advan-

tages over the DenseBlock-UNet because the dense-block
module makes the model less prone to overfitting.

We also compared the results with some existing mod-
els, including the aforementioned three UNet-based models,
Residual UNet [25], Recurrent UNet [25], R2UNet [25],
and one iterate prediction methods, i.e. Iter-Seg [14], which
have been introduced in Section 2. Only the results of UNet,
DenseBlock-UNet, and Deform-UNet were from our repro-
duced tests, while all other results were adopted from the
corresponding papers. The results on the DRIVE dataset
are shown in Table 1. We show results of two variants of
IterNet. Both of them use image patches with the size of
128 for training. In prediction, one takes a whole image as
input and outputs the final results, while the other (denoted
by “patched”) uses image patches for both training and pre-
diction, and the resulting vessel maps are concatenated. As
we can see, image patch-based prediction brought some im-
provement while it costs longer running time (see the sup-
plementary material for the detailed time cost). These two
variants have shown the superior AUCs to all other mod-
els. Actually, they are the only models in our test that have
AUCs higher than 0.98.

We also conducted the comparison experiments on
CHASE-DB1 and STARE, which do not have officially-
specified training and test sets as well as the FoV masks.
Therefore, we only compare the results with the results of
our reproduced models with the same settings. The results
are shown in Tables 2 and 3. To ensure a fair comparison,
we list the performance both with or without FoV masks.
It can be seen that the proposed IterNet has the best perfor-
mance in the most metrics on both datasets.

However, all the metrics above are pixel-level and do not
reflect the segmentation performance on the vessel network
level. Therefore, we adopt a new metric, i.e., connectivity
[26, 27], which is an important requirement for clinicians
to conduct analysis on retinal images using some vessel-
related patterns, such as crossing or branching [28]. The
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Figure 6. Visualization of the segmentation results on DRIVE, CHASE-DB1, and STARE datasets.

connectivity C is defined as follows.

C(θ) =

1− |SP(θ)− SG|
SMax

for |SP(θ)− SG| ≤ SMax

0 otherwise
(3)

where SP(θ) is the number of segments in the predicted seg-
mentation binarized with threshold θ, and SG the number of
segments in the gold standard segmentation, respectively.
SMax is the maximum number of segments allowed for one
vessel map. Since the maximum number of segments in-
volves the total vessel length L, it should be defined accord-
ing to L, which can be calculated by skeletonizing the gold
standard and counting the number of skeleton pixels. We
set SMax = αL and we make α = 0.05 in this experiment.

With this definition, we drew a curve of θ versus C(θ) (re-
fer to the supplementary material for some examples). We
adopt the area under this curve as connectivity metric (ab-
breviated to Conn.). As shown in Tables 1, 2, and 3, IterNet
achieved the highest connectivity in all three datasets.

We present some example results in Fig. 6. As we can
see, over all three datasets, our IterNet model worked the
best. We consider that this is due to deep understanding of
vessel networks by IterNet’s iterative architecture: It knows
how to connect vessel segments together even they look vi-
sually disconnected on the raw retinal images.

As introduced in Section 3, weight-sharing among mini-
UNets helps to avoid overfitting in the training process. We
conduct an experimental test to see the actual performance



Table 1. Performance comparison on the DRIVE dataset (with mask).
Method Year Conn. F1 Score Sensitivity Specificity Accuracy AUC
Iter-Seg [14] 2016 - - 0.739 0.978 0.949 0.967
UNet(reported [6]) 2018 0.7948 0.8174(0.8021) 0.7822(-) 0.9808(-) 0.9555(0.9681) 0.9752(0.9830)
Residual UNet [25] 2018 - 0.8149 0.7726 0.9820 0.9553 0.9779
Recurrent UNet [25] 2018 - 0.8155 0.7751 0.9816 0.9556 0.9782
R2UNet [25] 2018 - 0.8171 0.7792 0.9813 0.9556 0.9784
DenseBlock-UNet 2018 0.8332 0.8146 0.7928 0.9776 0.9541 0.9756
DUNet(reported [6]) 2019 0.8314 0.8190(0.8203) 0.7863(-) 0.9805(-) 0.9558(0.9697) 0.9778(0.9856)
IterNet 2019 0.9001 0.8218 0.7791 0.9831 0.9574 0.9813
IterNet(Patched) 2019 0.9193 0.8205 0.7735 0.9838 0.9573 0.9816

Table 2. Performance comparison on the CHASE-DB1 dataset.
FoV Method Year Conn. F1 Score Sensitivity Specificity Accuracy AUC

Without Masks

UNet 2018 0.8198 0.7993 0.7840 0.9880 0.9752 0.9870
DenseBlock-UNet 2018 0.8269 0.8005 0.8177 0.9848 0.9743 0.9880
DUNet 2019 0.8402 0.8000 0.7858 0.9880 0.9752 0.9887
IterNet 2019 0.9091 0.8072 0.7969 0.9881 0.9760 0.9899

With Masks

UNet 2018 0.8198 0.7993 0.7841 0.9823 0.9643 0.9812
DenseBlock-UNet 2018 0.8269 0.8006 0.8178 0.9775 0.9631 0.9826
DUNet 2019 0.8402 0.8001 0.7859 0.9822 0.9644 0.9834
IterNet 2019 0.9091 0.8073 0.7970 0.9823 0.9655 0.9851

Table 3. Performance comparison on the STARE dataset.
FoV Method Year Conn. F1 Score Sensitivity Specificity Accuracy AUC

Without Masks

UNet 2018 0.7148 0.7594 0.6681 0.9939 0.9736 0.9779
DenseBlock-UNet 2018 0.7229 0.7691 0.6807 0.9940 0.9745 0.9801
DUNet 2019 0.7479 0.7629 0.6810 0.9931 0.9736 0.9823
IterNet 2019 0.8977 0.8146 0.7715 0.9919 0.9782 0.9915

With Masks

UNet 2018 0.7148 0.7595 0.6681 0.9915 0.9639 0.9710
DenseBlock-UNet 2018 0.7229 0.7691 0.6807 0.9916 0.9651 0.9755
DUNet 2019 0.7479 0.7629 0.6810 0.9903 0.9639 0.9758
IterNet 2019 0.8977 0.8146 0.7715 0.9886 0.9701 0.9881

of IterNet without weight-sharing. When N = 1, there is
no mini-UNets, the IterNet can be trained as common UNet;
when N = 2, the mini-UNet only runs for one time and
we get an AUC of 0.9795 on the DRIVE dataset, which is
very similar with the performance of Out1 from the Iter-
Net with N = 3; while when N ≥ 2, IterNet encounters
serious overfitting problems that the loss can reach a low
level on the training set while keeps high on the test set. We
also conduct an experiment to test the performance of Iter-
Net without skip connection, the AUCs respectively drop to
0.9799, 0.9770, 0.9808 on three datasets (refer to the sup-
plementary material for more results).

6. Conclusion

In this paper, we propose a segmentation model named
IterNet to address some existing problems in retinal image
segmentation. We use a standard UNet to analyze the raw
input images and map them into an initial prediction of the

vessel network. In order to remove errors, such as inconsis-
tent vessels, missing pixels, etc., which are very common in
existing vessel segmentation models, we add an iteration of
mini-UNets after UNet, and use the output of UNet as the
input of the following mini-UNets. By introducing weight-
sharing in mini-UNets and skip-connections, we success-
fully empower IterNet with the ability to find possible de-
fections in the intermediate results and fix them in a reason-
able way. The experimental results prove that the proposed
IterNet has achieved state-of-the-art performance over three
commonly-used datasets.
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Figure A shows the connectivity value under different
threshold for several methods on three popular datasets, i.e.,
DRIVE [1], CHASE-DB1 [2], and STARE [3]. The area
under the curve is used as the measurement in the paper.
We can see that IterNet almost always outperforms the other
three methods.

Tables A, B, and C give the results on various criteria for
two variants of IterNet. The first one is the IterNet model
without skip connections among the first layer of the base
UNet and the first layers of the mini-UNets, while the sec-
ond one is to replace mini-UNets in IterNet with full-size
UNets. Results show that they both suffer from a perfor-
mance drop on all three datasets.

Table D shows the detailed time cost in the inference pro-
cess. We used 128× 128 image patches and tested different
strides (the image patches are extracted every 3 or 8 pixels
in both horizontal and vertical directions). We can see that a
smaller stride may lead to a better refinement, while it also
brings much bigger time cost.

Figures B, C, and D present the visualization results of
the segments in the prediction results. We can see that Iter-
Net almost consistently produces a smaller number of seg-
ments.
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Figure A. Connectivity versus threshold on the three datasets: (a) DRIVE. (b) CHASE-DB1. (c) STARE.

Table A. Performance comparison on the DRIVE dataset (with mask).
Method Conn. F1 Score Sensitivity Specificity Accuracy AUC
IterNet 0.9193 0.8205 0.7735 0.9838 0.9573 0.9816
w/o Skip Connection 0.9106 0.8160 0.7659 0.9839 0.9565 0.9799
Iterated UNets 0.8893 0.8123 0.7575 0.9845 0.9559 0.9794

Table B. Performance comparison on the CHASEDB1 dataset (with mask).
Method Conn. F1 Score Sensitivity Specificity Accuracy AUC
IterNet 0.9091 0.8073 0.7970 0.9823 0.9655 0.9851
w/o Skip Connection 0.8920 0.7647 0.7001 0.9870 0.9610 0.9770
Iterated UNets 0.8773 0.7997 0.7670 0.9849 0.9652 0.9845

Table C. Performance comparison on the STARE dataset (with mask).
Method Conn. F1 Score Sensitivity Specificity Accuracy AUC
IterNet 0.8977 0.8146 0.7715 0.9886 0.9701 0.9881
w/o Skip Connection 0.8967 0.7482 0.6494 0.9920 0.9628 0.9808
Iterated UNets 0.8977 0.7641 0.6764 0.9913 0.9645 0.9830

Table D. Time costs for prediction of one image using IterNet with and without cropping.
Method Read Load Model Crop Pred (Patches) Combine Write SUM AUC
w. Image Patch (Stride 3) 8.55s 2.51s 2.94s 58.45s (22801) 1.03s 0.01s 73.49s 0.9816
w. Image Patch (Stride 8) 8.56s 2.50s 0.43s 10.49s (3249) 0.16s 0.01s 22.15s 0.9815
w. Whole Image. Crop 8.56s 2.50s - 0.01 (1) - 0.01s 11.08s 0.9813
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(e) (f)
Figure B. Vessel segments visualization of a retina image from DRIVE (when threshold = 110 and the connectivity values are provided
for each method in the parentheses). (a) Raw image. (b) Extracted center-line from the ground-truth. (c) UNet (0.7905). (d) DenseNet
(0.8282). (e) DUNet (0.8290). (f) IterNet (0.9049). Different colors means different segments. IterNet produces the fewest segments
among all these methods.
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Figure C. Vessel segments visualization of a retina image from CHASE-DB1 (when threshold = 110 and the connectivity values are
provided for each method in the parentheses). (a) Raw image. (b) Extracted center-line from the ground-truth. (c) UNet (0.8085). (d)
DenseNet (0.8019). (e) DUNet (0.8423). (f) IterNet (0.9034). IterNet also gives the smallest number of segments.
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Figure D. Vessel segments visualization of a retina image from STARE (when threshold = 110 and the connectivity values are provided
for each method in the parentheses). (a) Raw image. (b) Extracted center-line from the ground-truth. (c) UNet (0.7128). (d) DenseNet
(0.7260). (e) DUNet (0.7095). (f) IterNet (0.9035). Different colors mean different segments. Again, IterNet is the best in connectivity.


