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Abstract

For an autonomous robotic system, monitoring surgeon actions and assisting
the main surgeon during a procedure can be very challenging. The challenges
come from the peculiar structure of the surgical scene, the greater similarity in
appearance of actions performed via tools in a cavity compared to, say, human
actions in unconstrained environments, as well as from the motion of the endo-
scopic camera. This paper presents ESAD, the first large-scale dataset designed
to tackle the problem of surgeon action detection in endoscopic minimally in-
vasive surgery. ESAD aims at contributing to increase the effectiveness and
reliability of surgical assistant robots by realistically testing their awareness of
the actions performed by a surgeon. The dataset provides bounding box an-
notation for 21 action classes on real endoscopic video frames captured during
prostatectomy, and was used as the basis of a recent MIDL 2020 challenge. We
also present an analysis of the dataset conducted using the baseline model which
was released as part of the challenge, and a description of the top performing
models submitted to the challenge together with the results they obtained. This
study provides significant insight into what approaches can be effective and can
be extended further. We believe that ESAD will serve in the future as a useful
benchmark for all researchers active in surgeon action detection and assistive
robotics at large.
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1. Introduction

Minimally Invasive Surgery (MIS) is a very sensitive medical procedure,
typically involving a main surgeon and an assistant surgeon. The success of
an MIS procedure rests upon multiple factors, such as the attentiveness of the
two surgeons, their competence, their degree of coordination, and so on. Ac-
cording to the Lancet Commission, each year 4.2 million people die within 30
days of surgery [1]. Another study at Johns Hopkins University points out that
10% of total deaths in the USA are due to medical error [2]. There is no def-
inite measure to compute and predict the risk factors associated with surgeon
behaviour, making it very critical to monitor the set of actions performed by
surgeons during a procedure in real time, so that any unfortunate event may be
avoided. Artificial intelligence is widely employed in applications where human
error needs to be mitigated. The use of artificial intelligence in diagnostic imag-
ing and electrodiagnosis, for instance, has been steadily rising in the past few
years with the aim of mitigating human error issues [3, 4]. There are growing
demands to explore the application of artificial intelligence to a variety of other
areas, such as healthcare delivery, healthcare administration, clinical decision
support, patient monitoring and healthcare interventions, among others. [5, 6].

Robotic Minimally Invasive Surgery (R-MIS), in particular, has surgical pro-
cedures performed remotely with the help of robotic arms using minimal surgical
incisions to reduce trauma to the body. An R-MIS procedure involves at least
five people (one main surgeon, one assistant surgeon, two nurses and one anaes-
thetist). Such an operation requires intensive communication among all these
actors, highlighting the risk of error or miscommunication. The introduction of
an autonomous robotic assistant surgeon [7], such as the one developed by the
EU funded SARAS project (https://saras-project.eu/), has the potential
to make surgical procedures safer. To accomplish that, the robotic assistant
needs to identify and track the actions performed by the main surgeon in the
surgical cavity and captured by the endoscopic camera.

Action detection is an establish field in computer vision. The problem com-
bines two tasks: (i) recognising an action and (ii) locating the action, which are
tackled jointly. Action recognition consists in understanding what class of ac-
tion is being performed, whereas action localisation provides the location of that
action, typically on the image plane and in the form of a rectangular bounding
box containing the action instance at hand. This gives complete information
about what is happening and where. This knowledge can then be used in differ-
ent ways, for example to drive the autonomous intervention of the robot during
a surgery, to enable semi-supervised decision support and assistive robotics, to
record and offline analyse the variations across different surgeries by computing
useful statistics.

Various datasets exist to validate the action detection task in computer vi-
sion. However, they all focus on full-body actions performed by human beings
captured by external cameras, and consider action classes that are fairly clearly
distinguishable based on appearance (see for instance AVA [8], DALY [9] or
UCF101-24 [10]). No dataset, however, has yet been devised to allow the vali-
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dation of action detection in the medical domain, specifically for MIS or R-MIS
surgery.
Action detection from endoscopic video exhibits a number of specific features.
Firstly, actions are not performed by humans directly but only through tele- or
manually-operated tools. Secondly, the surgical cavity as a ’scene’ is rather in-
distinct compared to the external scenes captured by classical datasets, in which
objects of very different guise and shape can be easily discerned. In an endo-
scopic video, instead, different organs will typically appear rather similar, with
no clear boundaries, while surgical tools themselves may only be distinguished
by tiny, subtle details of the jaws. Thirdly, endoscopic videos are captured at
very close range, which prevents from obtaining sufficient contextual informa-
tion for action recognition.

For all these reasons, surgeon action detection from endoscopic video is
bound to be much more challenging than classical human action detection. Nev-
ertheless, this hypothesis was never validated up to now, nor was a benchmark
specifically designed to support the introduction of action detection in surgical
robotics and medical imaging available.

1.1. The ESAD dataset

The ESAD dataset is the first benchmark explicitly designed to assess and
evaluate methods for the detection of surgeon actions from endoscopic videos,
developed with the assistance of medical professionals as well as expert surgeons.
The dataset contains four complete radical prostatectomy (RARP) procedures,
each around 4 hours long, annotated with 46,325 action instances in the form
of a bounding box with the associated action label. The dataset contemplates
21 action classes specific to radical prostatectomy.

Given the complexity of the surgical scenes portrayed and the inherent dif-
ficulty in detecting surgeon actions, we are confident ESAD will pave the way
forward and set a benchmark for the medical computer vision research commu-
nity. The dataset will also help lay the foundations for more robust algorithms
to be used in future surgical systems to accomplish various related tasks, such as
autonomous assistant surgeons, surgical intervention, surgeon feedback systems,
surgical anomaly detection, and so on.

The dataset was released as part of the SARAS-ESAD challenge1 organised
at the 2020 Medical Imaging and Deep Learning (MIDL) international confer-
ence. The challenge attracted a large number of participants and submissions
covering a wide range of approaches. The mean Average Precision (mAP) met-
ric was used to evaluate and rank the methods. Following standard practice in
action detection, the mAP was computed at three Intersection over Union (IoU)
overlap thresholds of 0.1, 0.3 and 0.5. Several submission were able to surpass
the performance of the baseline method provided by the organisers. However,

1The challenge website is: https://saras-esad.grand-challenge.org. Please download
the dataset from there.
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only the top ranking methods and a few other approaches which showed signif-
icant novelty from an algorithmic point of view are included in this paper (see
Section 7).

1.2. Paper outline

The rest of the paper is structured as follows. Section 2 reviews the state of
the art, followed in Section 3 by a problem statement for action detection, in
particular in the medical domain. Detailed information on the ESAD dataset,
such as the annotation tool and protocols used, the number of action instances
per class, etc. are provided in Section 4. The design of the challenge event, the
development of the baseline and the evaluation metric are discussed in Section 5.
The results of the baseline model follow in Section 6. The most interesting and
best performing methods submitted to the challenge are discussed in Section 7.
The paper concludes with Section 8.

2. Literature review

Action detection or activity analysis from medical images or videos is a field
still rather unexplored [11]. As a consequence, most work in this field hails in
the context of general human gesture and action recognition and/or detection.
Nevertheless, some relevant efforts deserve to be mentioned.

2.1. Action and gesture recognition in medical imaging

Earlier works such as [12] used the motion of the surgeon’s hand to recognise
the action performed. Voros et al. [13] used the motion of the tools to detect
the point of interaction between tool and organ. Kocev et al. [14] used point
clouds generated using a Microsoft Kinect device to build an augmented reality
model of the real time actions performed by surgeon, without any attempt
to recognise them. In [15], authors used a weakly-supervised approach based
on Gaussian Mixture Models (GMM) to recognise surgeon actions. However,
the approach was not trained on real surgical images (actions were performed
on plain uniform artificial surface) and could only recognise actions under the
assumption of only one action occurring per frame. More recently, Azari et
al. [16] used videos of surgeon hand motions to predict surgical maneuvers.
The method, however, was limited to actions performed by the surgeon directly
with their own hands rather than via teleoperation. Li et al. [17], developed
a temporal action segmentation approach using sub-action categories for early
stage prediction. Cascade histogram features were used to identify the starting
point of every sub-action. Candidates were then used to train an SVM to
classify each sub-action. Again, the algorithm was trained on artificial data,
with actions performed manually.
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2.2. Human action understanding in computer vision

Within computer vision, the most important distinction is that between
action recognition (in which the aim is purely to classify a video as an instance
of a certain action class), temporal action segmentation [18] (which aims at also
deciding when an action starts and stops) and fully-fledged action detection
(which aims at providing the bounding box(es) around the action(s) of interest,
together with the corresponding class scores).

Action recognition methods generally use a 3D convolutional neural network
(CNN) to extract spatio-temporal features from the video sequence in order to
predict the final action class [19, 20, 21, 22]. Other approaches use a 2D-CNN to
extract spatial features and employ some form of recurrent network to learn the
temporal relationships between them [23, 24, 25]. Temporal action segmentation
also requires to extract spatio-temporal information from the video sequence.
However, instead of just predicting the class of the action portrayed in the
video, these methods also provide the starting and end point of each action
instance [26, 27]. Finally, action detection methods add even more complexity
to the problem by targeting the spatial location of the action being observed
[28, 29, 30]. Such algorithms generally use object detectors to localise the action
to later apply some post-processing to link up these spatial action bounding
boxes over time to create ’action tubes’.

Another important distinction is between static and dynamic approaches.
Static methods only use spatial information (image data) without any attempt
to model the temporal context or dynamics of the action to recognise [31, 32,
30]. Dynamic activity detection methods, instead, use video data to learn the
temporal context of the motion being observed [33, 29, 34, 35].

2.3. Action detection

We would like to mention a few significant examples of work in this area.
Singh et al. [31] used the Single Shot multi-box Detector (SSD) [36] to detect
action within each video frame. SSD is capable of predicting an object’s bound-
ing box in a single shot, making it one of the fastest object detection algorithms
available. Gkiocari et al.[32] used an R-CNN to output proposal regions po-
tentially containing the action. These proposals were then used to learn the
context information to produce a more accurate action class. Saha et al. [33]
proposed an action detection module called 3D-RPN (3-Dimensional Region
Proposal Network) which uses spatial as well as temporal information from the
same video sequence. The model uses two different frames from the same action
sequence, separated by an interval of time ∆, to learn the temporal dynamics of
the action. Earlier, Tian et al. [37] had used a deformable part-based model [38]
to detect actions. Peng et al. [30] developed a motion region proposal network
based on the Faster-RCNN architecture [39]. There, two streams (RGB images
and optical flow) were used to generate action proposals. Jain et al. [40] used
supervoxels to generate action bounding boxes. Their method produces 2D + t
bounding boxes by sampling the videos using Selective Search [41].
Kalogeiton et al. [29] and Hou et al. [35] both developed action-tube based
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methods. Both models predict an action tube, which in turn provides spatial
bounding boxes in each video frame from the start to the end of an action
instance. Li et al. [42] proposed a recurrent tubelet proposal and recognition
(RTPR) network to address the same task. Their architecture comprises two
networks, one for proposal generation and one for recognition, and uses a combi-
nation of convolutional and long-short term memory (LSTM) networks to model
the recurrent nature of the action proposals.

2.4. Relevant existing datasets

2.4.1. Human action understanding

While several datasets for action recognition have been released in recent
years, action detection research can leverage a comparatively lower number of
benchmarks. The largest datasets for action recognition are Kinetics [43] and
Moments [44], the de-facto benchmarks in this area. Notably, the ”something-
something” dataset [45] provides sequences of complex actions performed by
humans with everyday objects and comprises 174 fine-grained action classes.
Recently, datasets for temporal activity detection has also been released, in-
cluding ActivityNet [46] and Charades [47]. These datasets are designed to val-
idate methods that detect the start and end point of an action instance within
a longer video.

Relevantly to this work, a few datasets have been designed to actually cope
with action detection. Examples are J-HMDB-21 [48], UCF-101-24 [10], LIRIS-
HARL [49] and DALY [50], which all provide annotation on the spatial location
of each action instance within a video frame together with the start and end
time stamp. The more recent AVA dataset [51] is currently the largest dataset
for action detection with 1.6M labeled instances.

2.4.2. Surgical datasets

Although no datasets specific to action detection are available in the medi-
cal domain, some datasets exist for action recognition, phase recognition, tool
detection and other related tasks. In particular, the M2CAI 2016 dataset is
divided into a m2cai16-workflow dataset and a m2cai16-tool dataset. The for-
mer [52] has been developed for the recognition of the phases that compose a
cholecystectomy procedure from laparoscopic videos, and contains 41 videos of
the procedure. The m2cai16-tool dataset [53] has been developed to validate the
detection of tools during cholecystectomy, and contains 15 laparoscopic videos.
Another relevant dataset is Cholec80, which has been released by the same
group for phase recognition and tool detection. This dataset contains 80 videos,
again of cholecystectomy procedures [52]. The Multi-View Operating Room
(MVOR) dataset has been recorded using multiple cameras placed at different
places in an operating room, and focuses on the 2D and 3D estimation of the
pose of operating room staff. The dataset contains 732 synchronised multi-view
frames recorded by three RGB-D cameras [54]. The JHU-ISI Gesture and Skill
Assessment Working Set (JIGSAWS) is a dataset for activity recognition [55]
which contains 39 trial samples with synchronised videos and kinematic infor-
mation targeting a number of standard medical training tasks. Unlike ESAD,
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however, this dataset was collected in an artificial setup rather than on real MIS
procedures.

3. Problem statement

3.1. The action detection problem

Action detection is one of the most complex problems in computer vision.
The term is used interchangeably with spatiotemporal action detection. The
objective of the task is to identify each action instance in a video sequence by
recognising the category of the action being performed, as well as to localise the
action instance in both the spatial and the temporal domain. The output is the
start and end time of the action instance, together with a rectangular bounding
box in each video frame between start and stop which identifies where the action
is taking place in the image plane. An action instance can then be represented
by a series of bounding boxes linked over time, i.e., an action tube [56].

3.2. Specificity of action detection from medical images

As we mentioned, surgeon action detection has peculiarities that make it
very challenging. The key factor that sets it apart from similar tasks in other
domains is the specific nature of the surgical scene and its appearance. Among
the most important issues are:

• The deformable nature of the organs. As shown in Figure 1, organs do not
hold a fixed shape in contrast to the traditional human action detection
setting, in which the human body has fixed (albeit articulated) shape and
is surrounded by objects which also typically have a characteristic shape.

• Shape and color variance between two different organs are minimal, and
boundaries are hard to recognise, marking a significant difference from
standard computer vision tasks (as shown in Figure 1).

• Endoscopic cameras capture scenes at very close proximity. Hence, the
captured frames are unable to show complete organs or their surround-
ings, delivering little contextual information. In contrast, general activity
datasets such as Kinetic [43] or AVA [8] allow methods to mine colour,
texture, shape and contextual information making it easier to learn dis-
criminative scene features.

• The incessant motion and awkward orientation of the endoscope, espe-
cially in near proximity, make organs appear very differently from different
angles.

• The automation of surgical tasks requires to provide a very fine-grained
definition of the relevant surgeon actions (e.g., ’CuttingMesocolon’, ’Pulling-
Prostate’ etc.), in which classes differ by small but significant details. It
thus becomes highly important to accurately distinguish the organ under
operation to be able to accurately detect and predict a surgeon’s action.
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(a) (b)

(c) (d)

Figure 1: (a) and (b) show sample frames from our ESAD dataset. (c) and (d) portray sam-
ples from the Kinetics-400 dataset [43], which collects videos from YouTube. The difference
between ESAD and Kinetics [43] are evident. In the ESAD dataset, the endoscope captures
images from a very close range, thus losing all the useful contextual information human ac-
tivity videos from YouTube can provide. Additionally, general-purpose action recognition
datasets such as Kinetics [43] or AVA [8] provide color, texture, shape and scene information
that makes the detection task easier.

4. ESAD Dataset

This section described first the data collection process (Section 4.1), then
the annotation protocol we followed (Section 4.2), to then consider the structure
of the resulting ESAD benchmark (Section 4.3).

4.1. Data collection

ESAD is composed by four videos of radical prostatectomy procedures con-
ducted on patients, which were collected as part of the EU funded SARAS
project by San Raffaele Hospital. The videos were recorded using a da Vinci
Xi robotic system, which comes with an integrated binocular endoscope with a
diameter of 8 mm, produced by Intuitive Surgical Inc. Two lenses (0o or 30o)
were used. In different stages of the operation, the 30o lens can be used to either
look up or down to improve visualisation. The videos used which compose this
dataset are monocular.

Sensitive data used by San Raffaele Hospital (images and footage of radical
prostatectomies) in the SARAS project was lawfully collected through explicit
consent of the data subjects (legal bases: Article 6(1)(a), Article 9(2)(a)) for
a previous observational study. The latter was approved, through a specific
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research protocol, by the Research Ethics Committee of San Raffaele Hospi-
tal, composed of more than forty members and currently evaluating more than
30 protocols/month. All surgical videos were anonymised before starting the
necessary annotation work.

4.1.1. Robotic Assisted Radical Prostatectomy

The four videos depict a Robotic Assisted Radical Prostatectomy (RARP),
which is the resection of the whole prostate gland in patients with prostate can-
cer, with a secondary aim of preserving urinary continence and erectile function.
This intervention is the gold standard for robotic-assisted surgery. The surgical
team present in the operating room (OR) was composed by: a main surgeon,
operating at the da Vinci console; a surgical assistant (usually a trained urology
resident), operating at the surgical table with laparoscopic tools. The duration
of RARP surgery is about 3 to 4 hours.
The surgical area was accessed through small incisions in the abdomen and the
use of trocars. The first surgeon controlled an advanced robotic system capable
of moving surgical tools from outside the body. A high-tech interface would
let the surgeon use natural wrist movements and a 3D screen during the entire
operation. One of these trocars was placed over the umbilicus for camera port.
This involves inserting a fibre-optical instrument and some other operating in-
struments into the patient’s inflated abdomen. The camera would stream video
data to the operator’s console, where it was used to have a view of the patient’s
abdomen.

Two possible approaches exist as to how to access the surgical area within
RARP: (i) the transperitoneal approach, with access to the abdomen, and the
(ii) extraperitoneal one, with pelvic access. Most RARPs are executed through
the transperitoneal approach, which is indeed the situation described in the
SARAS procedural workflow. Within the transperitoneal approach itself, two
different modalities for reaching the target organs during RARP exist. In the
anterior modality, after transperitoneal access and insufflation, the space of
Retzius is immediately entered and the prostate gland, seminal vesicle, and
vasa are reached and dissected from the front. In the posterior modality, the
seminal vesicles and vasa are initially reached and completely dissected behind
the bladder. The videos selected for ESAD concerned the RARP posterior
approach, for this procedure is routinely performed in the clinical practice by
the expert urological surgeons of San Raffaele Hospital.

Note, however, for the purpose of simplifying the RARP procedure to be
implemented in the SARAS project demonstrator, it was necessary to select
the transperitoneal anterior approach. This change was dictated by pre-testing
evidence on the robotic platform and phantoms and, in accordance with San
Raffaeke surgeons, was aimed to enlarge the surgical working space and to op-
timise the anatomical reconstruction of the phantom.

4.2. Annotation protocol

For action detection purposes, the videos need to be annotated by manually
providing bounding boxes around the actions of interest in each video frame,
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and by inputting the class label associated with each bounding box.

4.2.1. The Virtual object Tagging Tool

Video annotation was performed using the Virtual object Tagging Tool
(VoTT). VoTT is a Microsoft open source tool used for drawing bounding boxes
around regions of interest in visual data. A screenshot of its graphical user in-
terface is shown in Figure 2

Figure 2: Screenshot captured while using VoTT for ESAD annotation.

4.2.2. Issues with the annotation process

The annotation process raises a number of issues. To begin with, what con-
stitutes an action or an event of interest is somewhat unclear. Some researchers
have considered for this purpose surgical tools tracking methodologies [23], but
for action detection and classification this would evidently cause the model to
focus too much on the tools, rather than on what happens in the surgical cavity.
As a result, the model would detect many false actions whenever a tool appears
in the field of view. The same could happen when focusing on tissue strands
or organs. We therefore decided to explore a combination of both organs and
tools when setting the list of actions of interest and their descriptions. As a re-
sult, bounding boxes were drawn only when tools were close to the appropriate
organs in order to deliver the identified actions of interest.
What is the ideal size of a bounding box is also unclear. To balance the presence
of tools and organs or tissue in a bounding box, bounding boxes were restricted
to containing 30%-70% of either tools or organs.
Last but not least, the annotation protocol needs to precisely specify rules for
determining the temporal extent of each action.

Overall, the annotation task is subject to the inherent ambiguity of dis-
criminating visually similar classes. For instance, it is hard to tell whether the
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aspirator is sucking blood, pushing some organs to make way, or sucking smoke.
This was mitigated by seeking expert knowledge.

4.2.3. Annotation guidelines

A set of protocols was developed to guide the annotators in their work. This
helped minimise the ambiguity in deciding the size of bounding boxes around
each action instance, as well as their locations. All annotators were provided a
set of instructions with examples in order to standardise the procedure as much
as possible. The following guidelines were enforced:

• Each bounding box should contain both the organ and tool performing
the action under consideration, as each action class is highly dependent
on the organ under operation.

• To balance the presence of tools and organs or tissue in a bounding box,
bounding boxes are restricted to containing 30%-70% of either tools or
organs.

• An action label is only assigned when a tool is close enough to the ap-
propriate organ, as informed by the medical expert. Similarly, an action
stops as soon as the tool starts to move away from the organ.

4.3. Characteristics of the dataset

4.3.1. List of actions

After a rigorous analysis of the actions actually performed by the surgeons
in the four available RARP videos, we selected 21 action categories for inclusion
in ESAD. The decision was made while keeping in mind that action categories
should not be so simple that they cannot provide any useful information (e.g., for
an autonomous decision making module as in the SARAS architecture). Similar
problems were encountered in previous medical action recognition datasets [16,
12]. At the same time the action classes should not be so complex as to make
it impossible to perform the task.

The final list of action classes was decided with the help of multiple surgeons
and medical professionals. The list is shown in Table 1, along with the number
of action instances for each category in the whole dataset.

4.3.2. Duration, sampling rate

On an average, each of the four RARP videos which comprise ESAD is 2
hours and 20 minutes long. Each video is recorded at 30 frames per second
(FPS), whereas the annotation is performed at 1 FPS to avoid long stretches
in which the scene changes very little. Each frame can contain more than one
action instances. Each instance is annotated using a bounding box and its
action label from the list of classes. As during the procedure tools operate in
close proximity, the dataset contains many instances of action with overlapping
bounding boxes.
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Table 1: List of actions in the ESAD dataset, with the number of samples in each of the
training, validation and test folds.

Label Train Val Test Total instances

CuttingMesocolon 315 179 188 682
PullingVasDeferens 457 245 113 815
ClippingVasDeferens 33 25 48 106
CuttingVasDeferens 71 22 36 129
ClippingTissue 215 44 15 274
PullingSeminalVesicle 2712 342 436 3490
ClippingSeminalVesicle 118 35 33 186
CuttingSeminalVesicle 2509 196 307 3012
SuckingBlood 3753 575 1696 6024
SuckingSmoke 381 238 771 1390
PullingTissue 4877 2177 2024 9078
CuttingTissue 3715 1777 2055 7547
BaggingProstate 34 5 37 76
BladderNeckDissection 1621 283 519 2423
BladderAnastomosis 3585 298 1828 5711
PullingProstate 958 12 451 1421
ClippingBladderNeck 151 24 18 193
CuttingThread 108 22 40 170
UrethraDissection 351 56 439 846
CuttingProstate 1845 56 48 1949
PullingBladderNeck 189 509 105 803

Some example video frames with annotation are shown in Figure 3. From
the images it can been appreciated that all bounding boxes are centred around
a tool, as laparoscopic tools represent the ’subject’ of the action, but we make
sure to include a portion of the organ undergoing the operation.

The reason for that is that most surgical actions have different names de-
pending on the organ being operated upon, despite having in common the same
motion pattern of the same tool. This results in a very fine-grained recognition
problem, as it can be appreciated from Table 1.

5. Challenge

5.1. Training and evaluation split

We briefly recall the protocol for splitting the ESAD dataset into training
and evaluation folds we adopted for the MIDL 2020 SARAS-ESAD challenge.

The dataset was divided into three different sets: training, validation and
test. The two procedures with the highest number of action instances were se-
lected to form the training set. The one video with the most balanced number
of samples for each action class was used as the test set. The goal was to provide
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Figure 3: Sample video frames from the ESAD dataset, with the corresponding surgeon actions
annotations. A red box in figure denotes a bounding box. The video frames are captured by
the endoscope during a prostatectomy procedure.

a fair evaluation of all possible types of algorithms, under a limited but realistic
modelling of the domain variations in the problem. The last procedure was
selected as the validation set. The training set contained a total of 22,601 anno-
tated frames, comprising 28,055 action instances. The validation set contained
4,574 frames portraying 7,133 action instances in total. The test set (released
only in a second moment), contained 6,223 annotated frames with 11,565 action
instances.

The distribution of the samples for each action category and for each of the
three splits is shown in Figure 4. It is clear from the chart that ESAD is highly
skewed in term of class imbalance. The reason for this is the nature of surgical
procedures itself, and of RARP in particular. As shown in Figure 4, classes
PullingTissue and CuttingTissue contain the largest number of samples, as these
are the most common actions performed by a surgeon during prostatectomy. In
opposition, classes such as BaggingProstate and CuttingThread have the lowest
number of samples, because of the short duration of these activities in the course
of each procedure.

5.2. Challenge task

For our MIDL 2020 SARAS-ESAD challenge we decided to only set one task,
namely that of action detection from individual images (video frames), rather
than ask the participants to also tackle the more difficult challenge of video-
based action detection (i.e., the detection of series of bounding boxes delimiting
an action instance or ’action tube’). The main reason for this decision was that
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Figure 4: Distribution of the number of samples per action category in the training, validation
and test sets, represented by blue, green and red bars in the diagram, respectively.

this is a very new challenge for medical computer vision community and the
task is already complex enough. Challenge entries were thus required to predict
the class as well as the bounding box (location) of the action instances present
in any given frame. The presence of multiple simultaneous actions in a single
frame further complicated the problem.

We do plan to augment the challenge in the near future by adding more
tasks and asking for video detection evaluation.

5.3. Evaluation metrics

5.3.1. Average precision

Detection tasks are normally assessed in terms of average precision (AP),
which does not merely focus on the percentage of misclassified examples. For
each class, AP requires to calculate both the percentage of instances correctly
classified as positive over the total of those classified as positive (precision)
and the rate of positive instances correctly recognised as such, known as recall.
Namely, we define precision and recall as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
,

where TP is the number of true positives, FP is the number of false positives
and FN is the number of false negatives. Average precision is then obtained
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by plotting precision against recall (yielding a precision-recall curve) and then
integrating the area under the curve.

Mean Average Precision (mAP) over a set of query points is the mean of
the AP scores for each query. For our action detection problem, one can define
the Frame-mAP value as the mean of the AP values for each of the individual
frames.

5.3.2. IoU thresholds

Whether a predicted detection is correct or not can be measured by the
percentage overlap between the predicted and ground truth bounding boxes.
The Intersection over Union (IoU) value is the ratio between the area of the
intersection of the two bounding boxes over the area of their union. In our
challenge we used three different IoU thresholds to assess the correctness of the
detections and to compute the corresponding average precision. We computed
the average precision at IoU = 0.1, 0.3 and 0.5, respectively, obtaining figures
we call in the following AP10, AP30 and AP50. Their mean was also computed
to get a final evaluation score for the challenge.

The purpose of computing AP at three different degrees of detection overlap
is to capture the quality of the detection as well as that of the classification.
As we know, this is a new and challenging task, for which it is very difficult
to get good detection performance at higher thresholds (as can be observed in
the AP50 column of our baseline results, see Table 2). Hence, we wanted to
assess both how accurately a model can detect the classes of action present in
the scene as well as how precise is the location of the predicted bounding boxes.

5.4. Baseline model

We released a baseline model before the start of the challenge to provide a
reference for the competing teams.

5.4.1. Backbone

Our baseline model is based on a Feature Pyramidal Network (FPN) ar-
chitecture, a concept originally proposed by Lin et al. [57] which uses a CNN
architecture with pooling layers. A residual network (ResNet) [58] is used as the
‘backbone’ network for the detection model: the output of each residual block is
used to build the feature pyramid. The residual feature maps at different levels
of pyramid are then fed to a sub-net composed of four convolutional layers. Fi-
nally, an additional convolutional layer predicts the class scores and bounding
box coordinates, respectively.

Similarly to what done in the original paper [57] we freeze the batch nor-
malisation layers of the ResNet-based backbone. In addition, a few initial layers
are also frozen to avoid overfitting. Finally, non-maximal suppression (NMS)
[59] is used to discard the false positives among model predictions at test time.
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5.4.2. Losses

We tried two different loss functions to train the classification sub-net of our
baseline model. Since the latter is a single-stage model based on [57], following
the original paper we trained our FPN with both an online hard example mining
(OHEM)-loss [36] and focal loss [60]. The OHEM loss assigns a larger weight
to more difficult (‘hard’) examples than to easier ones. Focal loss, on its part,
is specifically designed to handle class imbalance in the training data. As class
imbalance is a critical feature of this dataset, we believe it is important to see
how focal loss affects the performance of the detector. To train the regressed
bounding boxes coordinates in the sub-net we used a smooth l1 loss [39].

5.4.3. Implementation details

We trained our baseline model using various input image sizes, namely 200,
400, 600 or 800 pixels (short, row side), by rescaling the original video frame
while preserving its aspect ratio. For training, we set the learning rate to 0.01
and the batch size to 16. The networks were trained for 7K iterations with a
learning rate drop of a factor of 10 after 5K iterations.

The complete model was implemented in pytorch and is provided open ac-
cess2. At the moment, the source code supports PyTorch 1.5 and Ubuntu with
the Anaconda distribution of python. It was tested on machines with 2, 4 and
8 GPUs.

6. Baseline results

The results achieved by our baseline model on the ESAD dataset, using both
loss functions, are shown in Table 2. As mentioned we trained the model with
four different image sizes in order to observe the effect of the size of the sur-
gical tools on detection accuracy. As we can observe in Table 2, as the image
size increases models with an OHEM loss function are able to achieve better
detection accuracy on the validation set. The same, however, cannot be said for
the test-set. We believe that this performance gap is due to the lower sample
count for some classes in the training data. Moreover, the test set has lower
class imbalance than the validation set. This also highlights the issue of scene
complexity in medical images, as the latter have very high intra-class variation
and very little inter-class variation. This issue is further (involuntarily) exhacer-
bated by our choice of action classes, whose meaning is highly dependent on the
organ being manipulated.
Table 3 shows the results achieved by our baseline model using different back-
bone networks, while fixing the input image (row) size to 400, on both validation
and test sets.

2The baseline model is available at: https://github.com/Viveksbawa/

SARAS-ESAD-Baseline
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Table 2: Results of the baseline models with different loss functions and input image sizes.
The backbone network is set to ResNet50. The columns AP10, AP30, AP50 report the average
precision at IoU threshold values of 0.10, 0.30 and 0.50, respectively, on the validation set.
The column APmean and Test − APmean report the mean average precision computed by
taking the mean of three AP values on the validation and test sets, respectively.

Loss Row size AP10 AP30 AP50 APmean APmean(Test)

Focal 200 33.8 17.7 6.6 19.4 15.7
Focal 400 35.9 19.4 8.0 21.1 16.1
Focal 600 29.2 17.6 8.7 18.5 14.0
Focal 800 31.9 20.1 8.7 20.2 12.4
OHEM 200 35.1 18.7 6.3 20.0 11.3
OHEM 400 33.9 19.2 7.4 20.2 13.6
OHEM 600 37.6 23.4 11.2 24.1 12.5
OHEM 800 36.8 24.3 12.2 24.4 12.3

Table 3: Results of the baseline models with different loss functions and backbone networks,
with input image size set to 400. Columns AP10, AP30, AP50 report the average precision
at IoU threshold values of 0.10, 0.30 and 0.50, respectively, on the validation set. Columns
APmean and Test−APmean report the mean average precision computed by taking the mean
of the three AP values on the validation and test sets, respectively.

Loss Backbone AP10 AP30 AP50 APmean APmean(Test)

Focal ResNet18 35.1 18.9 8.1 20.7 15.3
OHEM ResNet18 36.0 20.7 7.7 21.5 13.8
Focal ResNet34 34.6 18.9 6.4 19.9 14.3
OHEM ResNet34 36.7 20.4 7.1 21.4 13.8
Focal ResNet50 35.9 19.4 8.0 21.1 16.1
OHEM ResNet50 33.9 19.2 7.4 20.2 13.6
Focal ResNet101 32.5 17.2 6.1 18.6 14.0
OHEM ResNet101 36.6 20.1 7.4 21.3 12.3

It is clear from Tables 3 and 2 that the OHEM loss performs better on the
validation set, while focal loss performs better on the test set. While theoreti-
cally focal loss is designed to handle the problem of class imbalance, empirically
it did not prove to be very effective. There is no clear pattern in the perfor-
mance of the model in terms of the choice of a loss function. On the basis of
the formulation of the two losses, we can safely claim that the simpler weighting
mechanism of OHEM helps maintaining sufficiently large gradient magnitudes
throughout the learning process, leading to better convergence.

If we look at the dependency of performance from the backbone, lower-
depth networks seem to provide better detection results. ResNet18-based mod-
els achieve the highest mAP on both the validation set and the test set. Again,
this might be due to the fact that a lower depth and a lower parameter count
reduce the probability of overfitting to the training data, leading to better gen-
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eralisation power. Overall, it is clear that the presented baseline method is still
far from achieving a satisfactory performance, certainly not allowing the real-
world deployment of such as system, with a mean average precision generally
hovering around 20%.

7. Results of the challenge

Figure 5: Snapshot of the leaderboard from the challenge website.

7.1. Overview: single-stage versus two-stage detectors

A large number of entries were submitted to the challenge (75, from more
than 20 different research teams: see Fig. 5 for the top of the leaderboard).
The methods can be generally divided into single-stage versus multi-stage action
detection approaches.

Single-stage algorithms jointly predict the location of the action as well as its
category at the same time. Popular examples of single-stage detectors are the
Single Shot Detector (SSD) [36] and You Only Look Once (YOLO) [61], among
others. Two-stage approaches, instead, use two sub-modules. While the first
stage is used to localise the action, the second stage predicts the action class.
Examples of two-stage object detectors are, among others, R-CNN [62] and
Faster R-CNN [39]. In general, single-shot detectors are considered computa-
tionally more efficient and faster at inference time when compared to two-stage
models, but the latter are typically able to provide better detection accuracy.
Although this gap in performance has decreased over time for mainstream task
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and datasets [63, 64, 65], such as Microsoft COCO [66], for more complex tasks
(such as action detection) two-stage detectors still appear to outperform single-
stage models.
This hypothesis was also validated by the results of our challenge. In the fol-
lowing we structure the discussion by topic, rather than by entry.

7.2. Changing the backbone and attention mechanisms

Among the top performers, some submissions, which we describe here first,
chose to modify the baseline model by using different backbone and attention
mechanisms. Table 4 presents the impact of backbone replacement when only
the training data are used to train the model, while evaluation is performed on
the test set. The table presents the change in model performance associated with
seven different backbones, based on ResNeSt [67], CBAM [68] and a traditional
ResNet architecture. All backbones used models pretrained on the Imagenet
dataset, as is standard practice in computer vision. For all these models focal
loss with input image size of 200×360 were used for both training and evaluation.

Both ResNeSt and CBAM use an attention mechanism in their architectures.
‘Attention’ refers to the notion of directing your focus onto some components of
the input or the feature maps via the use of appropriate learnable weights. In
particular, ResNeSt uses a split attention mechanism which breaks the incoming
features into sub-groups along the channel dimension, after which attention is
applied in each of the sub-groups before merging them together. CBAM uses
a Convolutional Block Attention Module to compute feature attention, which
contains both a channel and a spatial attention component. Network depth,
the number of sub-groups considered in ResNeSt and the type of attention
mechanism are all key factors in determining the representation power of the
model. This is also reflected in the results shown in Table 5.

Table 4: Results obtained by CBAM and ResNeSt-based backbones on the ESAD test set
without using the validation set for training.

Backbone APmean AP10 AP30 AP50

ResNet-50 14.1 19.3 15.7 7.2
ResNet-101 12.9 17.7 14.3 6.4
CBAM-50 13.2 18.6 14.5 6.5
CBAM-101 13.9 19.6 15.3 6.8
ResNeSt-50 13.9 18.5 15.9 7.2
ResNeSt-101 15.4 20.9 17.3 8.1
ResNeSt-200 0.149 0.199 0.169 0.080

Table 5 reports the performance of the above-discussed models when the
validation data is added to the training set for training purposes. The num-
bers show a significant improvement in performance when the training data is
so increased. In both Tables 4 and 5 ResNeSt-based models achieve a much
better performance than any other single stage-detector backbones. The more
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Table 5: Results obtained by CBAM and ResNeSt-based backbones on the ESAD test set
after including the validation set as part of the training data.

Backbone APmean AP10 AP30 AP50

ResNet-50 14.7 20.7 17.0 6.3
ResNet-101 16.0 21.7 18.8 7.5
CBAM-50 13.8 20.5 15.5 5.4
CBAM-101 13.6 19.5 15.8 5.5
ResNeSt-50 15.7 22.2 17.6 7.2
ResNeSt-101 18.3 25.2 20.9 8.8
ResNeSt-200 18.9 25.3 20.9 10.2

sophisticated attention mechanism of the ResNeSt model can be credited for
these significantly higher average precision scores.

It is interesting to note that ResNeSt-101 performs better than its deeper
version ResNeSt-200 (see Table 4). The reason for this lower performance across
all IoU values can be traced to its overfitting the training data. As shown in
Table 5, ResNeSt-200 does surpass the performance of ResNeSt-101 when the
validation data is added to the training set. Additionally, with this increase in
the size of the training set the APmean for ResNeSt-200 improves from 14.9 to
18.9. This reinforces the hypothesis that class imbalance pushes models to give
more importance to the most populated classes.
In Figure 6 the distribution of the action classes in each of the splits is repre-
sented in the form of a pie chart. It is clear from the pie chart related to the
training fold that some classes have an overwhelming number of instance there,
while others are very sparsely populated. Merging the training and validation
sets not only increases the sample count per class but also balances the overall
class distribution.

Figure 6: Pie charts showing the percentage of instances for each action class in the training,
validation and test sets, plus the combination of training and validation folds.

The increase in the available training data pushes ResNeSt-200 to learn
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more robust feature representations when compared to ResNeSt-101. The lower
feature representation ability of ResNeSt-101 makes it saturate early due to
its shallower nature. Additionally, the inclusion of the validation set in the
training set reduces class imbalance, leading in turn to better generalisation on
the test set. The higher representation power of ResNeSt-200 also enables it
to localise action instances better, a fact which can be observed from the AP50
performance as a higher IoU threshold requires the model to be more accurate
at the localisation task. From Table 5 it can be seen that ResNeSt-200 achieves
10.2 average precision, while ResNeSt-101 only achieves an AP of 8.8.

7.3. Influence of data augmentation

One of the top submissions used data augmentation methods to boost per-
formance. There were, namely: vertical flipping, horizontal flipping, cropping,
padding, scaling, translating, rotating, sheering, blurring, additional noise, ad-
ditional frequency noise, color modification, brightness modification, contrast
modification. The team maintained that, due to the limitation of the imaging
sensors which come with endoscopes, surgical videos are usually of unsatis-
factory quality, as they tend to exhibit blur, noise, insufficient brightness or
sharpness, and so on. All these issues contribute to make the task even more
challenging for computer vision models. Therefore, a strong data augmentation
strategy must be set in place. Figure 7 shows the effects of different augmenta-
tion methods on a sample video frame. The figure clearly shows how augmen-
tation can massively increase intra-class variance with the objective of learning
more robust models.

Table 6: Results from submissions that employ data augmentation in combination with various
backbones. The baseline provided by us corresponds to the top row.

Methods APmean AP10 AP30 AP50

ResNet-50 16.2 21.9 17.9 8.7
ResNet-50 + Aug 17.6 23.2 19.7 9.9
SCNet-50 + Aug 16.4 22.9 18.5 8.0
ResNeSt-50 + Aug 17.7 25.0 20.1 8.1
ResNeSt-50 + Aug + LSTM 17.9 25.0 19.9 8.9

Table 6 shows the effects of using the above-mentioned augmentation ap-
proaches along with different backbones. The first row shows the performance
of the baseline model with a ResNet-50 backbone. The use of data augmenta-
tion significantly improves the performance of the model even in absence of any
additional changes. If the backbone of the model is chosen to be SCNet [69] or
ResNeSt [67] (both of which use different types of attention mechanisms), the
performance improves even further. SCNet uses a self-calibration mechanism
which divides the incoming channels into two sub-branches prior to computing
attention. Once again, the ResNeSt-based model achieves the best overall per-
formance on average, whereas ResNet seems to be able to provide more accurate
localisation at high IoU.
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(a) Original image (b) vertical flipping (c) horizontal flipping

(d) cropping and padding (e) scaling (f) translating

(g) rotating (h) sheering (i) blurring

(j) additional noise (k) additional frequency
noise

(l) color modification

(m) brightness modification (n) contrast modification (o) grey scale

Figure 7: Outputs of different data augmentation methods employed on the ESAD dataset,
applied to a sample frame.
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7.4. Exploiting the temporal information

As the sample images are extracted from the frames of an endoscopic video,
one of the top submission set out to exploit the temporal information carried
by the video by using several adjacent frames together as the input. To obtain
a model capable of processing temporal data, a recurrent design was used for
both the classification and the localisation heads.

As shown in Figure 8a, three consecutive frames are processed independently
through the backbone and the neck module to generate the corresponding spatial
features Ft−2, Ft−1 and Ft. Then, similarly to what done in [42], a convolutional
LSTM (ConvLSTM) module is used in the first and third layers of the heads
of RetinaNet. As a consequence, the spatial features extracted by the recursive
feature pyramid (RFP) network [70], which forms the neck of RetinaNet, are
passed to the ConvLSTM module one by one to extract the temporal context
(as shown in Figure 8b). In the participants’ initial implementation the RFP in
RetinaNet was designed for features with 256 channels, but was later reduced
to 64 channels due to memory constraint issues. The output of the first ConvL-
STM module is further processed by a convolutional layer, another ConvLSTM
module and, finally, two extra convolutional layers before the final output. The
results obtained by this method are shown in the last row of Table 6. There,
only the prediction for the last frame of the input triplet of adjacent frames is
evaluated.

(a)

(b)

Figure 8: (a) Architecture of the LSTM-based architecture proposed by one of the top partic-
ipants. The model exploits the sequential dependence between features from previous frames
to predict the action label(s) and bounding box(es) for the current frame. (b) Features from
frame t−2, t−1 and t are alternatively passed through a ConvLSTM layer and a Conv layer.
A final convolution layer predicts action labels and bounding boxes.

7.5. Two-stage detector-based submissions

We wish to conclude by discussing the submissions proposing a two-stage
action detection approach, which all used Faster R-CNN [39] as the base model.
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Figure 9: Results of applying random jitter to training bounding boxes. The bounding boxes
in red are the original ground truth annotation, while the ones in blue are the those generated
by random jitter as in (1).

Various types of backbone alterations along with data augmentation methods
were added to improve performance of these models.

7.5.1. Data augmentation

Data augmentation is a key part of training. As we know from the results
discussed above, a lower sample count for some classes can be a key driver of a
lower mAP. The augmentation methods applied in these challenge entries had
two key components: (i) bounding box jitter and (ii) anchor box clustering.

Artificial random jitter. After an analysis of the ESAD dataset, the team
found that its endoscope videos are captured from a very close distance. Hence,
they are not able to adequately capture the contextual information provided
by the surgical scene, unlike what happens in other action detection datasets.
In response, they introduced a ’bounding box jitter’ technique to improve the
ability of the model to capture discriminative features, thus reducing the bias
associated with subjective labeling. Random artificial jitter is applied as follows:

Updated = Original ∗ Uniform([0.9, 1.1]). (1)

’Original’ denotes a ground truth bounding box with shape (x, y, w, h), where
x and y represent the coordinates of the upper-left corner of the bounding box
while w and h are the width and height of the box. ’Uniform’ is a uniform
probability distribution in the closed interval [0.9, 1.1], whereas ’Updated’ is the
bounding box so randomly generated. The general idea is to use a uniform
distribution function to randomly translate, zoom or change the aspect ratio of
the original ground-truth bounding boxes so as to increase the diversity of the
training data. Examples of the application of jitter are show in Figure 9.

Anchor box clustering. A very important component of the design of detec-
tors is represented by ‘anchor boxes’. Typically, a fixed set of such anchor boxes
is defined with predefined aspect ratio bounds. In order to better fit the needs
of the ESAD dataset, the participants used the K-means algorithm to cluster
the bounding boxes associated with each action class throughout the training
data. A class-specific anchor box’s aspect ratio for each class was then selected
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based on the resulting cluster center. Figure 10 shows the resulting bounding
box clusters for each class.

Figure 10: K-means clustering of bounding boxes for each of the 21 action classes in ESAD.
Each sub-figure plots the width (x-coordinate) and height (y-coordinate) of the bounding
boxes associated with a single class. The red point represents the cluster center.

As depicted in Figure 10, the aspect ratio of most cluster centers is situated
around 1, showing that the original design ratio for anchors in Faster R-CNN [39]
(0.5, 1 and 2) is not very applicable here. Changing the ratio of these anchors
to 1 greatly accelerates the speed of network’s convergence. Firstly, it reduces
the complexity of the network and increases the speed of inference. Secondly,
because of the box clustering trick, using the anchor initialised by the cluster
center to return the other bounding boxes is relatively easy. Finally, it ensure
a high proportion of positive samples during the process of allocating positive
and negative samples which takes place in Faster R-CNN’s Region Proposal
Network (RPN) [39].

7.5.2. Model architectures

All of the models discussed in this section are based on the Faster R-CNN
model [39] and results for each of the model are presented in Table 7. The
first row shows the average precision values obtained with ResNet-101 as the
backbone of the Faster R-CNN model. No additional change is made to the
model and no data augmentation is used during training. As shown by Table
7, the performance of an out-of the box Faster R-CNN is not very impressive.
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A significant improvement can be observed simply after employing the data
augmentation methods presented in section 7.5.1 prior to training: mAP jumps
from 10.97 to 12.54, with an even bigger rise in AP10. This shows the importance
of suitable augmentation in detection tasks.

Table 7: Performance on the test set of ESAD dataset achieved by different two-stage ap-
proaches based on the Faster-RCNN model.

Backbone Preprocessing APmean AP10 AP30 AP50

ResNet-101 None 10.97 15.45 12.22 5.23
ResNet-101 Clustering and jitter 12.54 18.11 14.15 5.37
ResNet-101
Modified

Clustering and jitter 16.50 23.04 18.51 7.95

Ensemble clustering and jitter 19.28 27.63 22.05 8.16

Modified residual block. In the subsequent model (defined as ResNet-101
Modified in Table 7), a basic building block of ResNet is modified to improve
performance. Figure 11 shows both the original as well as the modified residual
block in ResNet. The original residual block (left) uses a skip connection to con-
nect the input and the output of the residual block. In the participants’ modified
residual block, a deformable convolution layer [71] (middle) and a global context
pooling layer (from GCNet [72]) are added (right). The deformable convolution
kernel adds an offset to the position of each point on the convolution grid. This
offset helps decide which point in the neighbourhood of the pixel should be used
to perform the convolution operation. In this way, convolution is no longer
limited to the traditional regular grid, providing an ability to learn deformable
structural features. The global context pooling layer, instead, partitions the
feature channels into two streams and computes contextual features from each
stream before merging them back together.
Note that ResNet uses four residual blocks. In this submission, the modified
residual block architecture was used in last three ResNet such layers, rather
than all four of them. As shown in Table 7, this amendment further signifi-
cantly improves model performance, achieving an mAP of 16.50.

Ensemble architecture. The last entry of Table 7 relates to an ensemble-
based architecture which uses three different feature extractors as part of the
backbone, namely ResNeXt-101 [73], ResNet-101 [58] and SENet [74]. The
approach uses weighted boxes fusion [75] to merge the bounding boxes predicted
by each individual model in the ensemble. The method uses the confidence of
the predictions in combination with a predefined IoU threshold to organise and
merge the different outputs. In this submission a IoU threshold of 0.5 was used.
As the results show, this ensemble architecture is able in achieve the best mAP
by far (19.28) and was the overall winner of the challenge.
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Figure 11: Block diagram of the original ResNet residual block (left), compared with the
proposed modified residual block with deformable convolution (middle) and global context
layer (right).

8. Conclusion

This paper presents the first-of-its-kind dataset for action detection in sur-
gical videos: SARAS-ESAD. The dataset was developed by manually annotat-
ing real surgical videos collected during prostatectomy (RARP) procedures via
an endoscope, and aims to provide a much-needed benchmark for the medical
computer vision community to develop and test algorithms for surgical action
detection in surgical robotics.

The dataset was used as the basis for a MIDL 2020 challenge. This paper
presents the baseline model proposed for the challenge as well as a few selected
models derived from the top performing entries. The baseline model is based on
single-shot detector architecture which uses ResNet-based backbones for feature
extraction. The model was tested with different backbones and at different
input resolutions. For training we used two different loss functions: online hard
example mining and focal loss. The focal loss-based model was shown to be able
to generalise much better to the challenge’s test set. We also found that a larger
image size results in better model performance, while average complexity/depth
models such as ResNet-34 seem to perform better that ‘deeper’ models.

A large number of entries were submitted to challenge which used a diverse
set of approaches. We have reported on the model architectures and the results
of the top submissions. The challenge’s results show that data augmentation
plays a very important role in model performance. Two-stage detector ap-
proaches were able to clearly outperform single-stage ones. The best-performing
model, in particular, used an ensemble of feature extractors with different ar-
chitectures and was able to achieved a mean average precision of 19.28 despite
a large class imbalance.

The results clearly illustrate the level of challenge associated with action de-
tection from surgical videos, as opposed to action performed by physical humans
in man-made environment. This shows that much work still needs to be done to
achieve the levels of reliability required for action detectors to be usefully and
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robustly integrated into the autonomous surgical platforms of the future.
In the future we will further investigate the issues here identified, work to con-
duct more extensive experiments on larger, more significant data and explore
the potential of cross-domain approaches able to exploit both data from real pro-
cedures as well as videos portraying artificial anatomies (phantoms) to deliver
more robust models.
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